GUO Jianchun,ZHANG Tao,WU Xi,et al. Production analysis and permeability evolution of fractured horizontal wells of coalbed methane reservoir[J]. Journal of China Coal Society,2025,50(1):516−531. DOI: 10.13225/j.cnki.jccs.2024.0578
Citation: GUO Jianchun,ZHANG Tao,WU Xi,et al. Production analysis and permeability evolution of fractured horizontal wells of coalbed methane reservoir[J]. Journal of China Coal Society,2025,50(1):516−531. DOI: 10.13225/j.cnki.jccs.2024.0578

Production analysis and permeability evolution of fractured horizontal wells of coalbed methane reservoir

More Information
  • Received Date: May 23, 2024
  • Available Online: January 19, 2025
  • Massive hydraulic fracturing has changed the status of low-productivity and low development efficiency for coalbed methane (CBM) reservoirs. However, the production dynamics of fractured wells and the permeability evolution mechanisms in CBM reservoirs are unclear, which significantly limits the efficient development of CBM reservoirs. Therefore, this study incorporates the total strain evolution under the conditions of gas-adsorption-induced swelling, fracture compression, and unsteady creep, uses the cubic law to establish the permeability model, and obtains the pressure and flow fields via the finite volume method (FVM) and the transient embedded discrete fracture model (tEDFM). Based on the embedded mass exchange law, an adsorbed-free phase multiple-mechanism recovery calculation framework is established to realize production dynamic analysis and productivity calculation. Results show that the production dynamics of CBM fractured wells include five stages: the initial high production stage, desorption-induced productivity increasing stage, mid-time stable production stage, production decline stage, and the final depleted stage. The larger the Langmuir pressure is, the faster sorbed gas production would be. When the Langmuir pressure is 2.6 MPa, after 1 800-day production, adsorbed gas dominates production. When the Langmuir volume is increased to 15 m3/t, desorbed gas’s contribution continuously increases. Adsorbed gas becomes the main gas source after 560-day production. The denser the hydraulic fractures are, the larger the drainage area is, the significantly higher the initial production would be, and the later the production decline occurs. When the fracture spacing is 3 times larger, the maximum gas production decreases by about 48%. When the fracture half-length is increased by 50 m, the initial production would nearly be doubled. The permeability evolution includes three stages: loss, recovery, and enhancement. When the fracture compressibility coefficient is 0.03 MPa−1, and the loss rate is as high as 76% within 800 days. Despite the loss of permeability due to fracture closure, when the methane is desorbed and recovered, the reduction of swelling strain causes the permeability to recover. With fracturing intensity increases, and the permeability recovery becomes faster and stronger, which promotes the long-term recovery of CBM. When the desorption-induced strain is greater than 0.06, the permeability recovers and increases to 1.2 times the initial level in the later production period. The lower the coal viscoelastic modulus is, the more obvious the permeability damage caused by creep would be.

  • [1]
    刘高峰,刘欢,鲜保安,等. 煤层气开发地质“甜点区” 模糊模式识别模型[J]. 石油勘探与开发,2023,50(4):808−815. doi: 10.11698/PED.20220691

    LIU Gaofeng, LIU Huan, XIAN Baoan, et al. Fuzzy pattern recognition model of geological sweetspot for coalbed methane development[J]. Petroleum Exploration and Development,2023,50(4):808−815. doi: 10.11698/PED.20220691
    [2]
    黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.

    HUANG Zhongwei, LI Guofu, YANG Ruiyue, et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.
    [3]
    徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682.

    XU Fengyin, HOU Wei, XIONG Xianyue, et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682.
    [4]
    聂志宏,时小松,孙伟,等. 大宁−吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200. doi: 10.12363/issn.1001-1986.21.12.0818

    NIE Zhihong, SHI Xiaosong, SUN Wei, et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200. doi: 10.12363/issn.1001-1986.21.12.0818
    [5]
    徐凤银,张伟,李子玲,等. 鄂尔多斯盆地保德区块煤层气藏描述与提高采收率关键技术[J]. 天然气工业,2023,43(1):96−112. doi: 10.3787/j.issn.1000-0976.2023.01.010

    XU Fengyin, ZHANG Wei, LI Ziling, et al. Coalbed methane reservoir description and enhanced recovery technologies in Baode block, Ordos Basin[J]. Natural Gas Industry,2023,43(1):96−112. doi: 10.3787/j.issn.1000-0976.2023.01.010
    [6]
    朱庆忠,胡秋嘉,杜海为,等. 基于随机森林算法的煤层气直井产气量模型[J]. 煤炭学报,2020,45(8):2846−2855.

    ZHU Qingzhong, HU Qiujia, DU Haiwei, et al. A gas production model of vertical coalbed methane well based on random forest algorithm[J]. Journal of China Coal Society,2020,45(8):2846−2855.
    [7]
    宋洪庆,都书一,杨焦生,等. 基于机器学习的煤层气产能标定智能算法及影响因素分析[J]. 工程科学学报,2024,46(4):614−626.

    SONG Hongqing, DU Shuyi, YANG Jiaosheng, et al. Forecasting and influencing factor analysis of coalbed methane productivity utilizing intelligent algorithms[J]. Chinese Journal of Engineering,2024,46(4):614−626.
    [8]
    龚斌,王虹雅,王红娜,等. 基于大数据分析算法的深部煤层气地质—工程一体化智能决策技术[J]. 石油学报,2023,44(11):1949−1958. doi: 10.7623/syxb202311015

    GONG Bin, WANG Hongya, WANG Hongna, et al. Integrated intelligent decision-making technology for deep coalbed methane geology and engineering based on big data analysis algorithms[J]. Acta Petrolei Sinica,2023,44(11):1949−1958. doi: 10.7623/syxb202311015
    [9]
    熊先钺,季亮,张正朝,等. 鄂尔多斯盆地东缘韩城区块煤层气高产井地质主控因素[J]. 天然气工业,2024,44(3):64−71. doi: 10.3787/j.issn.1000-0976.2024.03.005

    XIONG Xianyue, JI Liang, ZHANG Zhengchao, et al. Main geological factors controlling high productivity of CBM wells in the Hancheng block at the eastern edge of the Ordos Basin[J]. Natural Gas Industry,2024,44(3):64−71. doi: 10.3787/j.issn.1000-0976.2024.03.005
    [10]
    李陈. 煤层气藏非对称水力裂缝直井产能评价[J]. 特种油气藏,2021,28(2):96−101. doi: 10.3969/j.issn.1006-6535.2021.02.014

    LI Chen. Evaluation on productivity of asymmetric hydraulic fractured vertical wells in coalbed methane reservoirs[J]. Special Oil & Gas Reservoirs,2021,28(2):96−101. doi: 10.3969/j.issn.1006-6535.2021.02.014
    [11]
    姜瑞忠,刘秀伟,王星,等. 煤层气藏多分支水平井非稳态产能模型[J]. 油气地质与采收率,2020,27(3):48−56.

    JIANG Ruizhong, LIU Xiuwei, WANG Xing, et al. Unsteady productivity model for multi-branched horizontal wells in coalbed methane reservoir[J]. Petroleum Geology and Recovery Efficiency,2020,27(3):48−56.
    [12]
    肖翠. 现代产量递减分析法在鄂尔多斯盆地延川南煤层气田中的应用[J]. 天然气工业,2018,38(S1):102−106.

    XIAO Cui. Application of modern production decline curve analysis method in Yanchuan south coalbed methane field in Ordos basin[J]. Natural Gas Industry,2018,38(S1):102−106.
    [13]
    LI W, LIU J S, ZENG J, et al. A fully coupled multidomain and multiphysics model considering stimulation patterns and thermal effects for evaluation of coalbed methane (CBM) extraction[J]. Journal of Petroleum Science and Engineering,2022,214:110506. doi: 10.1016/j.petrol.2022.110506
    [14]
    CHEN Z W, LIU J S, KABIR A, et al. Impact of various parameters on the production of coalbed methane[J]. SPE Journal,2013,18(5):910−923. doi: 10.2118/162722-PA
    [15]
    YANG R Y, HUANG Z W, YU W, et al. A semianalytical method for modeling two-phase flow in coalbed-methane reservoirs with complex fracture networks[J]. SPE Reservoir Evaluation & Engineering,2018,21(3):719−732.
    [16]
    SUN Z, HUANG B X, LIU Y S, et al. Gas-phase production equation for CBM reservoirs:interaction between hydraulic fracturing and coal orthotropic feature[J]. Journal of Petroleum Science and Engineering,2022,213:110428. doi: 10.1016/j.petrol.2022.110428
    [17]
    YE D Y, LIU G N, WANG F T, et al. Fractal hydrological-thermal–mechanical analysis of unconventional reservoir:A fracture-matrix structure model for gas extraction[J]. International Journal of Heat and Mass Transfer,2023,202:123670. doi: 10.1016/j.ijheatmasstransfer.2022.123670
    [18]
    TIAN J W, LIU J S, ELSWORTH D, et al. Linking fractal theory to a fully coupled coal deformation and two-phase flow multiphysics:The role of fractal dimensions[J]. Energy & Fuels,2022,36(20):12591−12605.
    [19]
    TIAN J W, LIU J S, ELSWORTH D, et al. An effective stress-dependent dual-fractal permeability model for coal considering multiple flow mechanisms[J]. Fuel,2023,334:126800. doi: 10.1016/j.fuel.2022.126800
    [20]
    YANG R Y, HUANG Z W, HONG C Y, et al. Modeling fishbones in coalbed methane reservoirs using a hybrid model formulation:gas/water production performance in various lateral-cleat-network geometries[J]. Fuel,2019,244:592−612. doi: 10.1016/j.fuel.2019.01.165
    [21]
    ZHU J, TANG J, HOU C Y, et al. Two-phase flow model of coalbed methane extraction with different permeability evolutions for hydraulic fractures and coal reservoirs[J]. Energy & Fuels,2021,35(11):9278−9293.
    [22]
    ZHANG J Y, FENG Q H, ZHANG X M, et al. Multi-fractured horizontal well for improved coalbed methane production in eastern Ordos Basin, China:Field observations and numerical simulations[J]. Journal of Petroleum Science and Engineering,2020,194:107488. doi: 10.1016/j.petrol.2020.107488
    [23]
    WANG C, RAN Q Q, WU Y S. Robust implementations of the 3D-EDFM algorithm for reservoir simulation with complicated hydraulic fractures[J]. Journal of Petroleum Science and Engineering,2019,181:106229. doi: 10.1016/j.petrol.2019.106229
    [24]
    WANG B, FIDELIBUS C. An open-source code for fluid flow simulations in unconventional fractured reservoirs[J]. Geosciences,2021,11(2):106. doi: 10.3390/geosciences11020106
    [25]
    WANG B, LI B B, LI J H, et al. Measurement and modeling of coal adsorption-permeability based on the fractal method[J]. Journal of Natural Gas Science and Engineering,2021,88:103824. doi: 10.1016/j.jngse.2021.103824
    [26]
    CAVALCANTE T M, SOUZA A C R, HAJIBEYGI H, et al. Simulation of two-phase flow in 3D fractured reservoirs using a projection-based Embedded Discrete Fracture Model on Unstructured tetrahedral grids (pEDFM-U)[J]. Advances in Water Resources,2024,187:104679. doi: 10.1016/j.advwatres.2024.104679
    [27]
    OLORODE O, WANG B, RASHID H U. Three-dimensional projection-based embedded discrete-fracture model for compositional simulation of fractured reservoirs[J]. SPE Journal,2020,25(4):2143−2161. doi: 10.2118/201243-PA
    [28]
    XU Y, SEPEHRNOORI K. Modeling fracture transient flow using the Embedded Discrete Fracture Model with nested local grid refinement[J]. Journal of Petroleum Science and Engineering,2022,218:110882. doi: 10.1016/j.petrol.2022.110882
    [29]
    CAO R Y, SHI J J, JIA Z H, et al. A modified 3D-EDFM method considering fracture width variation due to thermal stress and its application in enhanced geothermal system[J]. Journal of Hydrology,2023,623:129749. doi: 10.1016/j.jhydrol.2023.129749
    [30]
    OLORODE O, RASHID H. Analytical modification of EDFM for transient flow in tight rocks[J]. Scientific Reports,2022,12(1):22018. doi: 10.1038/s41598-022-26536-w
    [31]
    LIANG S, LIANG Y W, ELSWORTH D, et al. Permeability evolution and production characteristics of inclined coalbed methane reservoirs on the southern margin of the Junggar Basin, Xinjiang, China[J]. International Journal of Rock Mechanics and Mining Sciences,2023,171:105581. doi: 10.1016/j.ijrmms.2023.105581
    [32]
    XUE S, ZHENG C S, KIZIL M, et al. Coal permeability models for enhancing performance of clean gas drainage:a review[J]. Journal of Petroleum Science and Engineering,2021,199:108283. doi: 10.1016/j.petrol.2020.108283
    [33]
    ZHANG L, ZHOU H W, WANG X Y, et al. A triaxial creep model for deep coal considering temperature effect based on fractional derivative[J]. Acta Geotechnica,2022,17(5):1739−1751. doi: 10.1007/s11440-021-01302-w
    [34]
    张雷,周宏伟,王向宇,等. 考虑蠕变影响的深部煤体分数阶渗透率模型研究[J]. 岩土工程学报,2020,42(8):1516−1524. doi: 10.11779/CJGE202008017

    ZHANG Lei, ZHOU Hongwei, WANG Xiangyu, et al. Fractional permeability model for deep coal considering creep effect[J]. Chinese Journal of Geotechnical Engineering,2020,42(8):1516−1524. doi: 10.11779/CJGE202008017
    [35]
    韩东旭,张炜韬,焦开拓,等. 基于嵌入式离散裂缝模型的增强型地热系统热−流−力−化耦合分析[J]. 天然气工业,2023,43(7):126−138. doi: 10.3787/j.issn.1000-0976.2023.07.014

    HAN Dongxu, ZHANG Weitao, JIAO Kaituo, et al. Analysis of thermal-hydraulic-mechanical-chemical coupling for EGS based on embedded discrete fracture model[J]. Natural Gas Industry,2023,43(7):126−138. doi: 10.3787/j.issn.1000-0976.2023.07.014
    [36]
    ZENG J, GUO J C, LIU J S, et al. Anisotropic permeability model for coal considering stress sensitivity, matrix anisotropic internal swelling/shrinkage, and gas rarefaction effects[J]. Energy & Fuels,2023,37(4):2811−2832.
    [37]
    ZHOU H W, WANG L J, RONG T L, et al. Creep-based permeability evolution in deep coal under unloading confining pressure[J]. Journal of Natural Gas Science and Engineering,2019,65:185−196. doi: 10.1016/j.jngse.2019.03.010
    [38]
    ZHOU H W, ZHANG L, WANG X Y, et al. Effects of matrix-fracture interaction and creep deformation on permeability evolution of deep coal[J]. International Journal of Rock Mechanics and Mining Sciences,2020,127:104236. doi: 10.1016/j.ijrmms.2020.104236
    [39]
    ZENG F H, PENG F, GUO J C, et al. Gas mass transport model for microfractures considering the dynamic variation of width in shale reservoirs[J]. SPE Reservoir Evaluation & Engineering,2019,22(4):1265−1281.
    [40]
    ZENG F H, ZHANG T, GUO J C. Shale gas mass transfer characteristics in hydration-induced fracture networks[J]. Journal of Natural Gas Science and Engineering,2022,107:104767. doi: 10.1016/j.jngse.2022.104767
    [41]
    MIAO T, YU B, DUAN Y, et al. A fractal analysis of permeability for fractured rocks[J]. International Journal of Heat and Mass Transfer,2015,81:75−80. doi: 10.1016/j.ijheatmasstransfer.2014.10.010
    [42]
    TAN Y L, PAN Z J, FENG X T, et al. Laboratory characterisation of fracture compressibility for coal and shale gas reservoir rocks:A review[J]. International Journal of Coal Geology,2019,204:1−17. doi: 10.1016/j.coal.2019.01.010
    [43]
    PERERA M S A, RANJITH P G, CHOI S K. Coal cleat permeability for gas movement under triaxial, non-zero lateral strain condition:A theoretical and experimental study[J]. Fuel,2013,109:389−399. doi: 10.1016/j.fuel.2013.02.066
    [44]
    LIU L J, LIU Y Z, YAO J, et al. Efficient coupled multiphase-flow and geomechanics modeling of well performance and stress evolution in shale-gas reservoirs considering dynamic fracture properties[J]. SPE Journal,2020,25(3):1523−1542. doi: 10.2118/200496-PA
    [45]
    XU J C, CHEN B L, SUN B J, et al. Flow behavior of hydraulic fractured tight formations considering Pre-Darcy flow using EDFM[J]. Fuel,2019,241:1145−1163. doi: 10.1016/j.fuel.2018.12.009
    [46]
    赵玉龙,黄鑫,张烈辉,等. 基于嵌入式离散裂缝模型优化的海陆过渡相页岩气压裂水平井数值模拟[J]. 天然气工业,2023,43(4):116−126. doi: 10.3787/j.issn.1000-0976.2023.04.011

    ZHAO Yulong, HUANG Xin, ZHANG Liehui, et al. Numerical simulation of fractured horizontal wells in transitional shale gas reservoirs based on embedded discrete fracture model optimization[J]. Natural Gas Industry,2023,43(4):116−126. doi: 10.3787/j.issn.1000-0976.2023.04.011
    [47]
    LOSAPIO D, SCOTTI A. Local embedded discrete fracture model (LEDFM)[J]. Advances in Water Resources,2023,171:104361. doi: 10.1016/j.advwatres.2022.104361
    [48]
    ZHAO Y L, LU G, ZHANG L H, et al. Numerical simulation of shale gas reservoirs considering discrete fracture network using a coupled multiple transport mechanisms and geomechanics model[J]. Journal of Petroleum Science and Engineering,2020,195:107588. doi: 10.1016/j.petrol.2020.107588
    [49]
    RASHID H U, OLORODE O. A continuous projection-based EDFM model for flow in fractured reservoirs[J]. SPE Journal,2024,29(1):476−492. doi: 10.2118/217469-PA
    [50]
    CHEN S D, TAO S, TANG D Z. In situ coal permeability and favorable development methods for coalbed methane (CBM) extraction in China:from real data[J]. International Journal of Coal Geology,2024,284:104472. doi: 10.1016/j.coal.2024.104472
    [51]
    GE Z L, LI S H, ZHOU Z, et al. Modeling and experiment on permeability of coal with hydraulic fracturing by stimulated reservoir volume[J]. Rock Mechanics and Rock Engineering,2019,52(8):2605−2615. doi: 10.1007/s00603-018-1682-z

Catalog

    Article views (111) PDF downloads (49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close