YU Yang,JIANG Qincai,WANG Zehua,et al. Dynamic characteristics and damage model of freezing thawing red sandstone under impact load[J]. Journal of China Coal Society,2025,50(5):2437−2452. DOI: 10.13225/j.cnki.jccs.2024.0641
Citation: YU Yang,JIANG Qincai,WANG Zehua,et al. Dynamic characteristics and damage model of freezing thawing red sandstone under impact load[J]. Journal of China Coal Society,2025,50(5):2437−2452. DOI: 10.13225/j.cnki.jccs.2024.0641

Dynamic characteristics and damage model of freezing thawing red sandstone under impact load

More Information
  • Received Date: June 05, 2024
  • To study the dynamic mechanical properties and damage evolution characteristics of freeze-thaw rocks under impact loads, 0, 15, 30, 45, and 60 freeze-thaw cycle tests and dynamic impact tests were conducted on red sandstone in cold regions. The effects of strain rate and freeze-thaw damage on the dynamic mechanical properties of red sandstone were analyzed. Based on the damage evolution equation considering the damage threshold, a damage viscoplastic dynamic constitutive model of freeze-thaw red sandstone was constructed based on the combination element model theory and statistical damage theory, and the rationality and applicability of the model were verified. The results show that red sandstone exhibits freeze-thaw cycle effects and strain rate effects, and its dynamic peak strength decreases with the increase of strain rate or the decrease of freeze-thaw cycle times. The higher the strain rate, the stronger the sensitivity to freeze-thaw damage; the introduction of dynamic peak strength loss γ can eliminate the strain rate effect under impact loads and more intuitively reflect the impact of freeze-thaw cycles on the dynamic peak strength of rocks under different impact loads. The damage threshold point is 45 freeze-thaw cycles, and after 45 cycles, the freeze-thaw damage tends to stabilize; compared with unfrozen and thawed environments, a larger scale crack network is formed internally, and the failure mode changes from splitting to shear failure. The mechanical properties deteriorate significantly in the freeze-thaw environment; the linear elastic stage of sandstone exhibits obvious behavior after freeze-thaw cycles. Based on the D-P failure criterion, a damage evolution equation considering the damage threshold is derived, which is more reasonable. Based on the Zhu−Wang−Tang constitutive model, a viscoelastic plastic dynamic constitutive equation for constructing damaged bodies is introduced, reflecting the comprehensiveness of the constitutive model; the dynamic constitutive model established in this article well reflects the complex characteristics of damage softening, viscoelasticity, and viscoplasticity exhibited by red sandstone during load deformation, and also reflects the influence of freeze-thaw damage on the dynamic mechanical properties of red sandstone; the conclusions obtained can provide reference for studying the dynamic impact failure of rocks in seasonal high-altitude and cold regions.

  • [1]
    李杰林,周科平,张亚民,等. 基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J]. 岩石力学与工程学报,2012,31(6):1208−1214. doi: 10.3969/j.issn.1000-6915.2012.06.016

    LI Jielin, ZHOU Keping, ZHANG Yamin, et al. Experimental study of rock porous structure damage characteristics under condition of freezing-thawing cycles based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1208−1214. doi: 10.3969/j.issn.1000-6915.2012.06.016
    [2]
    刘泉声,黄诗冰,康永水,等. 裂隙岩体冻融损伤研究进展与思考[J]. 岩石力学与工程学报,2015,34(3):452−471.

    LIU Quansheng, HUANG Shibing, KANG Yongshui, et al. Advance and review on freezing-thawing damage of fractured rock[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(3):452−471.
    [3]
    LUO X D, JIANG N, FAN X Y, et al. Effects of freeze–thaw on the determination and application of parameters of slope rock mass in cold regions[J]. Cold Regions Science and Technology,2015,110:32−37. doi: 10.1016/j.coldregions.2014.11.002
    [4]
    刘石,许金余,刘军忠,等. 绢云母石英片岩和砂岩的SHPB试验研究[J]. 岩石力学与工程学报,2011,30(9):1864−1871.

    LIU Shi, XU Jinyu, LIU Junzhong, et al. Shpb experimental study of sericite-quartz schist and sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(9):1864−1871.
    [5]
    LI J, ZHOU K, LIU W, et al. NMR research on deterioration characteristics of microscopic structure of sandstones in freeze–thaw cycles[J]. Transactions of Nonferrous Metals Society of China,2016,26(11):2997−3003. doi: 10.1016/S1003-6326(16)64430-8
    [6]
    FENG Q, JIN J C, ZHANG S, et al. Study on a damage model and uniaxial compression simulation method of frozen–thawed rock[J]. Rock Mechanics and Rock Engineering,2022,55(1):187−211. doi: 10.1007/s00603-021-02645-2
    [7]
    DENG H W, DONG C F, LI J L, et al. Experimental study on sandstone freezing-thawing damage properties under condition of water chemistry[J]. Applied Mechanics and Materials,2014,608-609:726−731. doi: 10.4028/www.scientific.net/AMM.608-609.726
    [8]
    FREIRE-LISTA D M, FORT R, VARAS-MURIEL M J. Freeze–thaw fracturing in building granites[J]. Cold Regions Science and Technology,2015,113:40−51. doi: 10.1016/j.coldregions.2015.01.008
    [9]
    张慧梅,夏浩峻,杨更社,等. 冻融循环和围压对岩石物理力学性质影响的试验研究[J]. 煤炭学报,2018,43(2):441−448.

    ZHANG Huimei, XIA Haojun, YANG Gengshe, et al. Experimental research of influences of freeze-thaw cycles and confining pressure on physical-mechanical characteristics of rocks[J]. Journal of China Coal Society,2018,43(2):441−448.
    [10]
    李杰林,周科平,波柯. 冻融后花岗岩孔隙发育特征与单轴抗压强度的关联分析[J]. 煤炭学报,2015,40(8):1783−1789.

    LI Jielin, ZHOU Keping, BO Ke. Association analysis of pore development characteristics and uniaxial compressive strength property of granite under freezing-thawing cycles[J]. Journal of China Coal Society,2015,40(8):1783−1789.
    [11]
    张慧梅,杨更社. 冻融岩石损伤劣化及力学特性试验研究[J]. 煤炭学报,2013,38(10):1756−1762.

    ZHANG Huimei, YANG Gengshe. Experimental study of damage deterioration and mechanical properties for freezing-thawing rock[J]. Journal of China Coal Society,2013,38(10):1756−1762.
    [12]
    刘德俊,浦海,沙子恒,等. 冻融循环条件下砂岩动态拉伸力学特性试验研究[J]. 煤炭科学技术,2022,50(8):60−67.

    LIU Dejun, PU Hai, SHA Ziheng, et al. Experimental study on dynamic tensile mechanical properties of sandstone under freeze-thaw cycles[J]. Coal Science and Technology,2022,50(8):60−67.
    [13]
    楚亚培,张东明,杨瀚,等. 液氮冻结和冻融循环作用下煤样力学特性试验研究[J]. 煤炭科学技术,2023,51(5):82−92.

    CHU Yapei, ZHANG Dongming, YANG Han, et al. Study on evolution law of mechanical properties of coal samples subjected to freezing and freeze-thaw cycles of liquid nitrogen[J]. Coal Science and Technology,2023,51(5):82−92.
    [14]
    张春会,耿哲,徐刚,等. 液氮冻融循环作用下饱水煤样力学特性试验研究[J]. 煤炭科学技术,2020,48(10):218−224.

    ZHANG Chunhui, GENG Zhe, XU Gang, et al. Experimental study on mechanical properties of saturated coal samples subjected to freezing-thawing cycles of liquid nitrogen[J]. Coal Science and Technology,2020,48(10):218−224.
    [15]
    张阳阳,黄伟. 冻融循环后红砂岩静动态劈裂拉伸性能对比分析[J]. 煤炭科学技术,2023,51(3):94−99.

    ZHANG Yangyang, HUANG Wei. Comparative analysis of static and dynamic split tensile properties of red sandstone after freeze-thaw cycles[J]. Coal Science and Technology,2023,51(3):94−99.
    [16]
    张二锋,刘慧,康跃明,等. 冻融受荷砂岩力学性能劣化与统计损伤模型研究[J]. 煤炭科学技术,2024,52(5):84−91. doi: 10.12438/cst.2023-0693

    ZHANG Erfeng, LIU Hui, KANG YueMing, et al. Study on deterioration of mechanical properties and statistical damage model of freeze-thaw loaded sandstone[J]. Coal Science and Technology,2024,52(5):84−91. doi: 10.12438/cst.2023-0693
    [17]
    李斌,朱志武,李涛. 冻融循环冻土的冲击动态力学性能[J]. 爆炸与冲击,2022,42(9):164−178.

    LI Bin, ZHU Zhiwu, LI Tao. Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles[J]. Explosion and Shock Waves,2022,42(9):164−178.
    [18]
    张蓉蓉,经来旺,马冬冬. 冻融和热冲击循环作用后红砂岩SHPB试验和本构模型研究[J]. 振动与冲击,2022,41(9):267−275.

    ZHANG Rongrong, JING Laiwang, MA Dongdong. SHPB tests and constitutive model of red-sandstone after freeze-thaw and thermal shock cycles[J]. Journal of Vibration and Shock,2022,41(9):267−275.
    [19]
    ZHANG F L, ZHU Z W, FU T T, et al. Damage mechanism and dynamic constitutive model of frozen soil under uniaxial impact loading[J]. Mechanics of Materials,2020,140:103217. doi: 10.1016/j.mechmat.2019.103217
    [20]
    MA D D, XIANG H S, MA Q Y, et al. Dynamic damage constitutive model of frozen silty soil with prefabricated crack under uniaxial load[J]. Journal of Engineering Mechanics,2021,147(6):04021033. doi: 10.1061/(ASCE)EM.1943-7889.0001933
    [21]
    ZHOU Z L, LI X B, YE Z Y, et al. Obtaining constitutive relationship for rate-dependent rock in SHPB tests[J]. Rock Mechanics and Rock Engineering,2010,43(6):697−706. doi: 10.1007/s00603-010-0096-3
    [22]
    ZHAO G M, XIE L X, MENG X R. A damage-based constitutive model for rock under impacting load[J]. International Journal of Mining Science and Technology,2014,24(4):505−511. doi: 10.1016/j.ijmst.2014.05.014
    [23]
    董凯,任辉启,阮文俊,等. 珊瑚砂应变率效应研究[J]. 爆炸与冲击,2020,40(9):30−39.

    DONG Kai, REN Huiqi, RUAN Wenjun, et al. Study on strain rate effect of coral sand[J]. Explosion and Shock Waves,2020,40(9):30−39.
    [24]
    巫绪涛,胡时胜,陈德兴,等. 钢纤维高强混凝土冲击压缩的试验研究[J]. 爆炸与冲击,2005,25(2):125−131. doi: 10.3321/j.issn:1001-1455.2005.02.006

    WU Xutao, HU Shisheng, CHEN Dexing, et al. Impact compression experiment of steel fiber reinforced high strength concrete[J]. Explosion and Shock Waves,2005,25(2):125−131. doi: 10.3321/j.issn:1001-1455.2005.02.006
    [25]
    LI B, ZHU Z W, NING J G, et al. Viscoelastic–plastic constitutive model with damage of frozen soil under impact loading and freeze–thaw loading[J]. International Journal of Mechanical Sciences,2022,214:106890. doi: 10.1016/j.ijmecsci.2021.106890
    [26]
    JIN S S, ZHENG G P, YU J. A micro freeze-thaw damage model of concrete with fractal dimension[J]. Construction and Building Materials,2020,257:119434. doi: 10.1016/j.conbuildmat.2020.119434
    [27]
    ZHANG Z Y, LIU Q, WU Q, et al. Damage evolution of asphalt mixture under freeze-thaw cyclic loading from a mechanical perspective[J]. International Journal of Fatigue,2021,142:105923. doi: 10.1016/j.ijfatigue.2020.105923
    [28]
    ZENG W, DING Y N, ZHANG Y L, et al. Effect of steel fiber on the crack permeability evolution and crack surface topography of concrete subjected to freeze-thaw damage[J]. Cement and Concrete Research,2020,138:106230. doi: 10.1016/j.cemconres.2020.106230
    [29]
    朱晶晶,李夕兵,宫凤强,等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究[J]. 岩土工程学报,2013,35(3):531−539.

    ZHU Jingjing, LI Xibing , GONG Fengqiang, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3):531−539.
    [30]
    张全胜,杨更社,任建喜. 岩石损伤变量及本构方程的新探讨[J]. 岩石力学与工程学报,2003,22(1):30−34. doi: 10.3321/j.issn:1000-6915.2003.01.005

    ZHANG Quansheng, YANG Gengshe, REN Jianxi. New study of damage variable and constitutive equation of rock[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(1):30−34. doi: 10.3321/j.issn:1000-6915.2003.01.005
    [31]
    陈思羽,王青成,杨立云. 类岩石材料动态本构模型研究进展[J]. 科技导报,2022,40(8):115−126.

    CHEN Siyu, WANG Qingcheng, YANG Liyun. Review of dynamic constitutive models of rock-like materials[J]. Science & Technology Review,2022,40(8):115−126.
    [32]
    翟越,赵均海,李寻昌,等. 岩石类材料损伤黏弹塑性动态本构模型研究[J]. 岩石力学与工程学报,2011,30(S2):3820−3824.

    ZHAI Yue, ZHAO Junhai, LI Xunchang, et al. Study of damage viscoelasto-plastic dynamic constitutive model of rock materials[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(S2):3820−3824.
    [33]
    袁超,张慧梅,孟祥振,等. 内摩擦角对冻融岩石损伤本构模型的影响探讨[J]. 煤田地质与勘探,2019,47(4):138−143. doi: 10.3969/j.issn.1001-1986.2019.04.021

    YUAN Chao, ZHANG Huimei, MENG Xiangzhen, et al. Influence of internal friction angle on damage constitutive model of freeze-thaw rock[J]. Coal Geology & Exploration,2019,47(4):138−143. doi: 10.3969/j.issn.1001-1986.2019.04.021
    [34]
    戚承志,钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制[J]. 岩石力学与工程学报,2003,22(2):177−181. doi: 10.3321/j.issn:1000-6915.2003.02.002

    QI Chengzhi, QIAN Qihu. Physical mechanism of dependence of material strength on strain rate for rock-like material[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(2):177−181. doi: 10.3321/j.issn:1000-6915.2003.02.002
  • Related Articles

    [1]WANG Lei, CHEN Lipeng, XIE Guangxiang, FAN Hao, LI Shaobo, ZOU Peng, ZHANG Yu. Meso-statistical damage constitutive model and validation of coal under CO2 - load coupling[J]. Journal of China Coal Society, 2024, 49(6): 2630-2642. DOI: 10.13225/j.cnki.jccs.2023.1186
    [2]LI Fanfan, CHEN Weizhong, YU Hongdan, MA Yongshang, LEI Jiang. Constitutive model of claystone based on plastic damage and its numerical implementation[J]. Journal of China Coal Society, 2020, 45(2). DOI: 10.13225/j.cnki.jccs.2019.0167
    [3]HU Yayuan, WANG Chao. Nonlinear coupling damage constitutive model for multi-jointed rock mass[J]. Journal of China Coal Society, 2019, 44(S1): 52-60. DOI: 10.13225/j.cnki.jccs.2018.0982
    [4]ZHANG Huimei, MENG Xiangzhen, PENG Chuan, YANG Gengshe, YE Wanjun, SHEN Yanjun, LIU Hui. Rock damage constitutive model based on residual intensity characteristics under freeze-thaw and load[J]. Journal of China Coal Society, 2019, (11). DOI: 10.13225/j.cnki.jccs.2018.1681
    [5]ZHANG Xiangdong, CAI Jiqi, TANG Nannan, LI Qingwen, SUN Chuang. Experimental study on mechanical properties of deep sandstone and its constitutive model[J]. Journal of China Coal Society, 2019, (7). DOI: 10.13225/j.cnki.jccs.2018.0920
    [6]XIE Beijing, YAN Zheng. Dynamic mechanical constitutive model of combined coal-rock mass based on overlay model[J]. Journal of China Coal Society, 2019, (2). DOI: 10.13225/j.cnki.jccs.2018.1007
    [7]LIU Feng, YU Yongjiang, CAO Lanzhu, ZHANG Wei, ZHANG Guoning. Constitutive model of soft rock disturbance creep based on disturbance factor[J]. Journal of China Coal Society, 2018, (10). DOI: 10.13225/j.cnki.jccs.2018.0655
    [8]GUO Deyong, LÜ Pengfei, ZHAO Jiechao, ZHU Tonggong. Deformation and damage characteristics and constitutive model of coal and rock under impact loading[J]. Journal of China Coal Society, 2018, (8). DOI: 10.13225/j.cnki.jccs.2018.0300
    [9]LIU Xinrong, LIU Jun, LI Dongliang, WANG Junbao, WANG Zijuan, ZHONG Zuliang. Unloading mechanical properties and constitutive model of sandstone under different pore pressures and initial unloading levels[J]. Journal of China Coal Society, 2017, (10). DOI: 10.13225/j.cnki.jccs.2017.0285
    [10]HAO Xian-jie, YUAN Liang, LU Zhi-guo, WANG Fei, REN Bo. An elastic-plastic-soften constitutive model of coal considering its nonlinear elastic mechanical behavior[J]. Journal of China Coal Society, 2017, (4). DOI: 10.13225/j.cnki.jccs.2016.0677

Catalog

    Article views (121) PDF downloads (39) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return