JIANG Jingyu,DONG Xiaobin,WEI Mintao,et al. Study and application of the energy unit cutting theory and punching-blasting synergy permeability enhancement technology in tectonic anomaly areas of coal mines[J]. Journal of China Coal Society,2025,50(5):2477−2495. DOI: 10.13225/j.cnki.jccs.2024.1087
Citation: JIANG Jingyu,DONG Xiaobin,WEI Mintao,et al. Study and application of the energy unit cutting theory and punching-blasting synergy permeability enhancement technology in tectonic anomaly areas of coal mines[J]. Journal of China Coal Society,2025,50(5):2477−2495. DOI: 10.13225/j.cnki.jccs.2024.1087

Study and application of the energy unit cutting theory and punching-blasting synergy permeability enhancement technology in tectonic anomaly areas of coal mines

More Information
  • Received Date: September 08, 2024
  • The coal seams in tectonic anomaly areas have high gas content, high geostress, low permeability, the development of tectonic coal, and uneven distribution of disaster-causing energy. These areas are key for preventing and controlling coal and gas outburst accidents. Hydraulic/pneumatic punching technology is one of the main methods for gas drainage in tectonic coal. Compared to conventional drilling for gas extraction, it significantly increases the pressure relief radius. However, new stress concentration areas easily form between adjacent punching holes in the coal seam, limiting and affecting gas extraction. This paper combined theoretical analysis, numerical simulation, and field experiments, this study investigated the principles of energy reduction and outburst prevention using combined punching and controlled energy-accumulating blasting measures. The main conclusions of this paper are as follows: ① This paper proposes an Outburst Energy Unit Cutting theory and a punching-blasting synergistic permeability enhancement technology, combining with the distribution of outburst potential and outburst start-up energy criteria, dividing the coal seam into several energy units, and carrying out cutting at the boundary and internal zoning management. Essentially, this method involves punching holes first, followed by controlled energy-accumulating blasting to create directional fractures in the tectonic areas of the coal seam, releasing stress. The punched holes provide free space for the movement of coal within the impact range of the blasting injection, forming a free surface of the coal at the blasting injection point and altering the continuity of the coal seam. The generated explosive gases and directional stress waves can promote stress rebalancing. This alters the gradient of elastic and gas expansion energy in the coal body, effectively cutting the energy units in tectonic anomaly areas. ② The FALC3D numerical simulation shows that punching can reduce the stress in the coal around the hole. As the punching radius increases, the pressure relief radius also increases. After punching, a certain range of stress concentration forms outside the pressure relief zone around the hole, which limits gas flow. ③ The media-energy cutting principle of controlled directional cumulative blasting technology is clarified. The blasting changes the outburst potential occurrence gradient near the free surface of the coal of the cutting unit, realizing the media-cutting-controlled energy cutting. The unit cutting effectively increases the length of the energy-resistant zone in front of the mining work and reduces the risk of operation in the low-high energy transition zone. ④ A numerical model was constructed based on the fluid-solid coupling algorithm to simulate the synergistic effect of controlled directional energy-focused blasting and punching holes. Results indicate that controlled energy-accumulating blasting achieves directional fracturing of the coal seam, forming larger cracks in the energy concentration direction. Over time, radial crack networks form around the punched holes as the control hole, eventually connecting with cracks in non-energy concentration directions, effectively enhancing permeability in tectonic anomaly areas. ⑤ Field tests show that within a 10-meter range around the blasting hole, the stress and debris amount in the punched area of the coal body significantly decreases. The gas extraction volume after using single and double energy-focused tubes was 1.76 to 4.35 times and 1.35 to 8.60 times, respectively, compared to before blasting. The effective gas extraction radius of hydraulic punching was only 5 meters, while the synergistic pressure relief and permeability enhancement radius of punching and blasting were at least 10 meters, more than doubling the pressure relief radius in tectonic anomaly areas, and the monthly driving speed of coal roadway has been increased by about 20 m per month.

  • [1]
    袁亮,王恩元,马衍坤,等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报,2023,48(5):1825−1845.

    YUAN Liang, WANG Enyuan, MA Yankun, et al. Research progress of coal and rock dynamic disasters and scientific and technological problems in China[J]. Journal of China Coal Society,2023,48(5):1825−1845.
    [2]
    程远平,雷杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报,2021,46(1):180−198.

    CHENG Yuanping, LEI Yang. Causality between tectonic coal and coal and gas outbursts[J]. Journal of China Coal Society,2021,46(1):180−198.
    [3]
    张玉贵,张子敏,曹运兴. 构造煤结构与瓦斯突出[J]. 煤炭学报,2007,32(3):281−284. doi: 10.3321/j.issn:0253-9993.2007.03.013

    ZHANG Yugui, ZHANG Zimin, CAO Yunxing. Deformed-coal structure and control to coal-gas outburst[J]. Journal of China Coal Society,2007,32(3):281−284. doi: 10.3321/j.issn:0253-9993.2007.03.013
    [4]
    谢和平,周宏伟,刘建锋,等. 不同开采条件下采动力学行为研究[J]. 煤炭学报,2011,36(7):1067−1074.

    XIE Heping, ZHOU Hongwei, LIU Jianfeng, et al. Mining-induced mechanical behavior in coal seams under different mining layouts[J]. Journal of China Coal Society,2011,36(7):1067−1074.
    [5]
    刘明举,孔留安,郝富昌,等. 水力冲孔技术在严重突出煤层中的应用[J]. 煤炭学报,2005(4):451−454. doi: 10.3321/j.issn:0253-9993.2005.04.010

    LIU Mingju, KONG Liuan, HAO Fuchang, et al. Application of hydraulic flushing technology in severe outburst coal[J]. Journal of China Coal Society,2005(4):451−454. doi: 10.3321/j.issn:0253-9993.2005.04.010
    [6]
    王凯,李波,魏建平,等. 水力冲孔钻孔周围煤层透气性变化规律[J]. 采矿与安全工程学报,2013,30(5):778−784.

    WANG Kai, LI Bo, WEI Jianping, et al. Change regulation of coal seam permeability around hydraulic flushing borehole[J]. Journal of Mining & Safety Engineering,2013,30(5):778−784.
    [7]
    刘洪永,程远平,赵长春,等. 保护层的分类及判定方法研究[J]. 采矿与安全工程学报,2010,27(4):468−474. doi: 10.3969/j.issn.1673-3363.2010.04.005

    LIU Hongyong, CHENG Yuanping, ZHAO Changchun, et al. Classification and judgment method of the protective layers[J]. Journal of Mining & Safety Engineering,2010,27(4):468−474. doi: 10.3969/j.issn.1673-3363.2010.04.005
    [8]
    程远平,付建华,俞启香. 中国煤矿瓦斯抽采技术的发展[J]. 采矿与安全工程学报,2009,26(2):127−139. doi: 10.3969/j.issn.1673-3363.2009.02.001

    CHENG Yuanping, FU Jianhua, YU Qixiang. Development of gas extraction technology in coal mines of China[J]. Journal of Mining & Safety Engineering,2009,26(2):127−139. doi: 10.3969/j.issn.1673-3363.2009.02.001
    [9]
    王恩元,汪皓,刘晓斐,等. 水力冲孔孔洞周围煤体地应力和瓦斯时空演化规律[J]. 煤炭科学技术,2020,48(1):39−45.

    WANG Enyuan, WANG Hao, LIU Xiaofei, et al. Spatio temporal evolution of geostress and gas field around hydraulic punching borehole in coal seam[J]. Coal Science and Technology,2020,48(1):39−45.
    [10]
    李经国,戴广龙,吴景民,等. 水力冲孔后周围煤层应力分布规律研究[J]. 煤矿安全,2015,46(10):48−51.

    LI Jingguo, DAI Guanglong, WU Jingmin, et al. Study on distribution laws of coal seam stress after hydraulic flushing[J]. Safety in Coal Mines,2015,46(10):48−51.
    [11]
    李成武,乔朕. 煤与瓦斯突出局部防突措施失效判定方法[J]. 煤炭学报,2024,49(S2):924−933.

    LI Chengwu, QIAO Zhen. Failure judgment method of local outburst prevention measures for coal and gas outburst[J]. Journal of China Coal Society,2024,49(S2):924−933.
    [12]
    刘明举, 崔凯, 刘彦伟, 等. 深部低透气性煤层水力冲孔措施防突机理分析[J]. 煤炭科学技术, 2012, 40(2): 45−48.

    LIU Mingju, CUI Kai, LIU Yanwei, et al. Analysis on outburst prevention mechanism of borehole hydraulic flushing measures for deep and low permeability seam.[J]. Coal Science and Technology, 2012, 40(2): 45−48.
    [13]
    ZHANG R, CHENG Y P, YUAN L, et al. Enhancement of gas drainage efficiency in a special thick coal seam through hydraulic flushing[J]. International Journal of Rock Mechanics and Mining Sciences,2019,124:104085. doi: 10.1016/j.ijrmms.2019.104085
    [14]
    王振锋,王宇,张涛. 掘进工作面水环保压聚能定向爆注卸压技术与装置[J]. 煤炭学报,2023,48(11):4036−4048.

    WANG Zhenfeng, WANG Yu, ZHANG Tao. Research and application of energy-accumulating blasting and water injecting under local water storage and pressure retention in excavation working face[J]. Journal of China Coal Society,2023,48(11):4036−4048.
    [15]
    郭德勇,赵杰超,张超,等. 煤层深孔聚能爆破控制孔作用机制研究[J]. 岩石力学与工程学报,2018,37(4):919−930.

    GUO Deyong, ZHAO Jiechao, ZHANG Chao, et al. Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(4):919−930.
    [16]
    郭德勇,张超,李柯,等. 松软低透煤层深孔微差聚能爆破致裂机理[J]. 煤炭学报,2021,46(8):2583−2592.

    GUO Deyong, ZHANG Chao, LI Ke, et al. Mechanism of millisecond-delay detonation on coal cracking under deep-hole cumulative blasting in soft and low permeability coal seam[J]. Journal of China Coal Society,2021,46(8):2583−2592.
    [17]
    郭德勇,赵杰超,朱同功,等. 双孔聚能爆破煤层裂隙扩展贯通机理[J]. 工程科学学报,2020,42(12):1613−1623.

    GUO Deyong, ZHAO Jiechao, ZHU Tonggong, et al. Crack propagation and coalescence mechanism of double-hole cumulative blasting in coal seam[J]. Chinese Journal of Engineering,2020,42(12):1613−1623.
    [18]
    李向上,郑俊杰,宋彦琦,等. 高瓦斯低透气性煤层聚能爆破增透机制[J]. 爆炸与冲击,2023,43(5):158−170.

    LI Xiangshang, ZHENG Junjie, SONG Yanqi, et al. On infiltration enhancement mechanism of shaped charge blasting in high gas and low permeability coal seam[J]. Explosion and Shock Waves,2023,43(5):158−170.
    [19]
    刘健,刘泽功,高魁,等. 深孔爆破在综放开采坚硬顶煤预先弱化和瓦斯抽采中的应用[J]. 岩石力学与工程学报,2014,33(S1):3361−3367.

    LIU Jian, LIU Zegong, GAO Kui, et al. Application of deep borehole blasting to top-coal pre-weakening and gas extraction in fully mechanized caving[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(S1):3361−3367.
    [20]
    宋彦琦,李向上,郭德勇. 多孔同段聚能爆破煤层增透数值模拟及应用[J]. 煤炭学报,2018,43(S2):469−474.

    SONG Yanqi, LI Xiangshang, GUO Deyong. Numerical simulation of multi-hole and same delay time of cumulative blasting in coal seam and its application[J]. Journal of China Coal Society,2018,43(S2):469−474.
    [21]
    刘健,刘泽功,高魁,等. 深孔定向聚能爆破增透机制模拟试验研究及现场应用[J]. 岩石力学与工程学报,2014,33(12):2490−2496.

    LIU Jian, LIU Zegong, GAO Kui, et al. Experimental study and application of directional focused energy blasting in deep boreholes[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(12):2490−2496.
    [22]
    郭德勇,张超,朱同功,等. 深孔聚能爆破起爆位置对煤层致裂增透的影响[J]. 煤炭学报,2021,46(S1):302−311.

    GUO Deyong, ZHANG Chao, ZHU Tonggong, et al. Effect of detonating position of deep-hole cumulative blasting on coal seam cracking and permeability enhancement[J]. Journal of China Coal Society,2021,46(S1):302−311.
    [23]
    梁洪达,郭鹏飞,孙鼎杰,等. 不同聚能爆破模式应力波传播及裂纹扩展规律研究[J]. 振动与冲击,2020,39(4):157−164,184.

    LIANG Hongda, GUO Pengfei, SUN Dingjie, et al. A study on crack propagation and stress wave propagation in different blasting modes of shaped energy blasting[J]. Journal of Vibration and Shock,2020,39(4):157−164,184.
    [24]
    杨帅,刘泽功,常帅,等. 地应力作用下聚能爆破煤体损伤特征试验研究[J]. 采矿与安全工程学报,2024,41(5):1078−1090.

    YANG Shuai, LIU Zegong, CHANG, Shuai et al. Experimental study on damage characteristics of coal body in concentrated shaped charge blasting under in-situ stress[J]. Journal of Mining & Safety Engineering,2024,41(5):1078−1090.
    [25]
    STEWART D S, GLUMAC N, NAJJAR F M, et al. Hydrodynamics computation of jet formation and penetration for micro-shaped charges[J]. Procedia Engineering,2013,58:39−47. doi: 10.1016/j.proeng.2013.05.007
    [26]
    穆朝民,王海露,黄文尧,等. 高瓦斯低透气性煤体定向聚能爆破增透机制[J]. 岩土力学,2013,34(9):2496−2500.

    MU Chaomin, WANG Hailu, HUANG Wenyao, et al. Increasing permeability mechanism using directional cumulative blasting in coal seams with high concentration of gas and low permeability[J]. Rock and Soil Mechanics,2013,34(9):2496−2500.
    [27]
    潘泱波,刘泽功. 含硬夹矸高瓦斯低透气性煤层多向聚能爆破技术研究[J]. 中国安全生产科学技术,2019,15(11):144−150.

    PAN Yangbo, LIU Zegong. Study on multi-direction shaped charge blasting technology for coal seam containing hard dirt band with high gas and low permeability[J]. Journal of Safety Science and Technology,2019,15(11):144−150.
    [28]
    郭德勇,揣筱升,张建国,等. 构造应力场对煤与瓦斯突出的控制作用[J]. 煤炭学报,2023,48(8):3076−3090.

    GUO Deyong, CHUAI Xiaosheng, ZHANG Jianguo, et al. Controlling effect of tectonic stress field on coal and gas outburst[J]. Journal of China Coal Society,2023,48(8):3076−3090.
    [29]
    蒋静宇,史孝宁,王成浩,等. 卸压速度对构造煤突出过程中瓦斯膨胀能的控制作用[J]. 煤炭学报,2024,49(11):4473−4485.

    JIANG Jingyu, SHI Xiaoning, WANG Chenghao, et al. Control effect of pressure-unloaded speed on gas expansion energy released by tectonic coal during coal and gas outburst[J]. Journal of China Coal Society,2024,49(11):4473−4485.
    [30]
    蒋静宇,史孝宁,程远平,等. 急速卸压条件下构造煤体应力释放规律试验研究[J]. 采矿与安全工程学报,2024,41(3):634−644.

    JIANG Jingyu, SHI Xiaoning, CHENG Yuanping, et al. Study on stress release law of tectonic coal under the condition of rapid unloading confining pressure[J]. Journal of Mining & Safety Engineering,2024,41(3):634−644.
    [31]
    谢雄刚,冯涛,王永,等. 煤与瓦斯突出过程中能量动态平衡[J]. 煤炭学报,2010,35(7):1120−1124.

    XIE Xionggang, FENG Tao, WANG Yong, et al. The energy dynamic balance in coal and gas outburst[J]. Journal of China Coal Society,2010,35(7):1120−1124.
    [32]
    袁亮. 煤矿典型动力灾害风险判识及监控预警技术研究进展[J]. 煤炭学报,2020,45(5):1557−1566.

    YUAN Liang. Research progress on risk identification, assessment, monitoring and early warning technologies of typical dynamic hazards in coal mines[J]. Journal of China Coal Society,2020,45(5):1557−1566.
    [33]
    苏)霍多特 B B. 煤与瓦斯突出[M]:北京:中国工业出版社,1966.
    [34]
    XUE S, ZHENG C S, ZHENG X L, et al. Experimental determination of the outburst threshold value of energy strength in coal mines for mining safety[J]. Process Safety and Environmental Protection,2020,138:263−268. doi: 10.1016/j.psep.2020.03.034
    [35]
    WANG C H, CHENG Y P. Role of coal deformation energy in coal and gas outburst:A review[J]. Fuel,2023,332:126019. doi: 10.1016/j.fuel.2022.126019
    [36]
    ZHANG H, CHENG Y P, DENG C B, et al. Stress-unloading and gas migration improvement mechanism in the soft and hard interbedded coal seam using directional hydraulic flushing technology[J]. International Journal of Mining Science and Technology,2023,33(9):1165−1179. doi: 10.1016/j.ijmst.2023.07.002
    [37]
    GAO Y B, LIN B Q, YANG W, et al. Drilling large diameter cross-measure boreholes to improve gas drainage in highly gassy soft coal seams[J]. Journal of Natural Gas Science and Engineering,2015,26:193−204. doi: 10.1016/j.jngse.2015.05.035
    [38]
    朱飞昊,刘泽功,刘健,等. 松软煤层水不耦合装药预裂爆破的力学特性数值分析[J]. 中国安全生产科学技术,2018,14(5):124−129.

    ZHU Feihao, LIU Zegong, LIU Jian, et al. Numerical analysis on mechanical properties of presplitting blasting with water uncoupled charge in soft coal seam[J]. Journal of Safety Science and Technology,2018,14(5):124−129.
    [39]
    GUO D Y, ZHANG H J, LYU P F, et al. Effect of fault on deep-hole cumulative blasting to improve coal bed permeability[J]. Chinese Journal of Engineering,2014,36(10):1281−1286.
    [40]
    黄楷,吴基文,翟晓荣,等. 不同煤体结构煤岩抗拉强度测试[J]. 工矿自动化,2021,47(7):115−119.

    HUANG Kai, WU jiwen, ZHAI Xiaorong, et al. Tensile strength test of coal and rock with different coal structure[J]. Industry and Mine Automation,2021,47(7):115−119.
    [41]
    张鑫,刘泽功,张健玉,等. 高瓦斯低渗煤层控制孔与定向控制爆破复合作用增透试验研究[J]. 岩石力学与工程学报,2023,42(8):2018−2027.

    ZHANG Xin, LIU Zegong, ZHANG Jianyu, et al. Experimental study on permeability enhancement by combined action of control hole and directional control blasting in high gas and low permeability coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(8):2018−2027.
    [42]
    WEI X Y, ZHAO Z Y, GU J. Numerical simulations of rock mass damage induced by underground explosion[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(7):1206−1213. doi: 10.1016/j.ijrmms.2009.02.007
    [43]
    陈秋宇. 爆炸载荷下控制孔作用机理及应用研究[D]. 淮南:安徽理工大学2012.

    CHEN Qiuyu. Research on functional mechanism and application of control hole under blasting load[D]. Huainan:AnHui University of Science and Technology, 2012.
    [44]
    辛新平,杨程涛,魏建平,等. 强突出煤层“内保护层”构建理论及工程实践[J]. 煤炭科学技术,2023,51(12):267−281.

    XIN Xinping, YANG Chengtao, WEI Jianping, et al. Theory and engineering practice of constructing “inner protection layer” for strongly prominent coal seams[J]. Coal Science and Technology,2023,51(12):267−281.
    [45]
    郭德勇,赵杰超,吕鹏飞,等. 煤层深孔聚能爆破有效致裂范围探讨[J]. 工程科学学报,2019,41(5):582−590.

    GUO Deyong, ZHAO Jiechao, LYU Pengfei, et al. Effective fracture zone under deep-hole cumulative blasting in coal seam[J]. Chinese Journal of Engineering,2019,41(5):582−590.
    [46]
    尚晓江,苏建宇. ANSYS/LS-DYNA动力分析方法与工程实例[M]. 北京:中国水利水电出版社,2006.
    [47]
    蔡峰,刘泽功,张朝举,等. 高瓦斯低透气性煤层深孔预裂爆破增透数值模拟[J]. 煤炭学报,2007,32(5):499−503. doi: 10.3321/j.issn:0253-9993.2007.05.012

    CAI Feng, LIU Zegong, ZHANG Chaoju, et al. Numerical simulation of improving permeability by deep-hole presplitting explosion in loose-soft and low permeability coal seam[J]. Journal of China Coal Society,2007,32(5):499−503. doi: 10.3321/j.issn:0253-9993.2007.05.012
    [48]
    李元林,刘勇,王沉,等. 高瓦斯低透气性煤层深孔预裂爆破增透技术研究及应用[J]. 中国安全生产科学技术,2020,16(9):71−76.

    LI Yuanlin, LIU Yong, WANG Chen, et al. Research and application of deep hole pre-splitting blasting technology for permeability enhancement in high gas and low permeability coal seam[J]. Journal of Safety Science and Technology,2020,16(9):71−76.
    [49]
    刘国磊,王泽东,张修峰,等. 基于围岩应力差异梯度控制的深部煤巷防冲机制与技术[J]. 煤炭学报,2025,49(S2):674.

    LIU Guolei, WANG Zedong, ZHANG Xiufeng, et al. Mechanism and technology of rock burst prevention in deep coal tunnel based on controlling surrounding rock stress difference gradient[J]. Journal of China Coal Society,2025,49(S2):674.
    [50]
    冯俊军,王恩元,沈荣喜,等. 基于克里金插值法的煤体应力场分布规律研究[J]. 煤炭科学技术,2013,41(2):38−41.

    FENG Junjun, WANG Enyuan, SHEN Rongxi, et al. Study on coal body stress distribution based on kriging interpolation method[J]. Coal Science and Technology,2013,41(2):38−41.

Catalog

    Article views (174) PDF downloads (46) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return