LI Xiangdong, DU Xuehong, DONG Jiatian. Simulation study on geochemical reaction of PRB in treating acid mine drainage[J]. Journal of China Coal Society, 2023, 48(3): 1345-1352.
Citation: LI Xiangdong, DU Xuehong, DONG Jiatian. Simulation study on geochemical reaction of PRB in treating acid mine drainage[J]. Journal of China Coal Society, 2023, 48(3): 1345-1352.

Simulation study on geochemical reaction of PRB in treating acid mine drainage

More Information
  • Available Online: May 17, 2023
  • Published Date: March 30, 2023
  • With the rapid development of industry, the demand for mineral resources also increases. Acid mine drainage(AMD)produced in the mining process is seriously harmful to the surrounding environment. The Permeable Reactive Barrier(PRB)utilizes the natural hydraulic gradient to intercept the pollution plume by placing reactive materials under it, and this technology has become one of the means to effectively deal with AMD. In order to study the effect of chemical reaction blockage in the PRB on its lifespan, a box device with a scale of 60 cm×15 cm×20 cm was built to simulate the process of limestone PRB for AMD treatment. Based on the data obtained from the box experiment, a new geochemical algorithm was developed using the chemical reaction transport model theory to describe the chemical reactions that may occur during the PRB treatment of AMD. Through the coupled simulation of MODFLOW and RT3D,the maximum lifetime of PRB to effectively treat pollutants is predicted. The results show that(1) The acid neutralization ability of limestone in the PRB and its removal effect on total iron and Al3+ in acid wastewater are effectively simulated, and the chemical blocking process of the PRB system is well reflected.(2) The simulation results are in good agreement with the actual values. The maximum errors between the measured and predicted pH values of the effluent at three different locations in the inlet area, the middle area and the outlet area are 0.38,0.30 and 0.29 respectively. The maximum errors between the actual value and the predicted value of the total iron concentration are 1.570,0.120 and 0.124 mg/L respectively. The maximum error between the actual value and the predicted value of Al3+ concentration is 1.010,0.374 and 0.160 mg/L respectively.(3) The prediction results show that the total iron and Al3+ contents in the effluent of this laboratory-scale PRB device are the lowest in the first 30 days, and the removal effect is the best, and the removal capacity gradually weakens with time. With reference to the limit of groundwater quality standard, it is judged that the limestone PRB can effectively treat total iron with a maximum life of 132 days, and effectively treat Al3+ with a maximum life of 63 days.
  • Related Articles

    [1]WANG Chuanzhen, LÜ Jintao, LIU Haizeng, WANG Guanghui, YU Anghong. Research of GM(1,N) dynamic network based on the metabolic algorithm optimization for ash fitting[J]. Journal of China Coal Society, 2023, 48(12): 4549-4558. DOI: 10.13225/j.cnki.jccs.2023.0058
    [2]YANG Xianyu, XIE Jingyu, YE Xiaoping, LÜ Wenjun, DAI Zhaokai, JIANG Guosheng, CAI Jihua. Migration of mineral particles and mechanism of injection plugging during CO2 geological storage in low-permeability reservoirs[J]. Journal of China Coal Society, 2023, 48(7): 2827-2835. DOI: 10.13225/j.cnki.jccs.CN23.0180
    [3]WANG Fan, CHEN Lunjian, XU Bing, MA Jiao, XING Baolin, SU Faqiang. Numerical simulation on the migration and permeable reaction barrier purification of groundwater contaminated by UCG[J]. Journal of China Coal Society, 2023, 48(4): 1697-1706. DOI: 10.13225/j.cnki.jccs.2022.0426
    [4]SHI Jianhang.FENG Zengchao.ZHOU Dong.HU Linjie.MENG Qiaorong, . Experimental study on coal blockage removal based on pulverized coal blockage[J]. Journal of China Coal Society, 2022, 47(4): 1629-1636.
    [5]CAI Chang-feng, SUN Jing, LUO Fei-xiang, XU Jian-ping, HE Shuang-shuang, HU Shou-heng, GUO Run-qiang, SHEN Hong-hui. Treatment of AMD through the pilot-scale SRB bio-cathode PRB based on cylindrical MFC[J]. Journal of China Coal Society, 2016, (9). DOI: 10.13225/j.cnki.jccs.2016.0070
    [6]CAI Chang-feng, SUN Jing, LUO Fei-xiang, HE Shuang-shuang, HU Shou-heng, WU Biao. Effects of treatment efficiency of AMD through the PRB based on different structure of MFC[J]. Journal of China Coal Society, 2016, (5). DOI: 10.13225/j.cnki.jccs.2015.1261
  • Cited by

    Periodical cited type(16)

    1. 郭天翔,邸旭峰. 软岩巷道群围岩破坏机理及分区支护技术研究. 煤炭技术. 2025(02): 6-10 .
    2. 武毅艺,何满潮,李辉,高玉兵,谢生荣. 深部多形式应用交岔点围岩失稳机理及能量演化研究(英文). Journal of Central South University. 2024(03): 890-911 .
    3. 王平,冯锦鹏,赵彦成,钮涛,刘国锋. TDS智能干选系统分选灵活性智能控制技术. 工矿自动化. 2024(S1): 174-178 .
    4. 张瑞军. 深部矿井采煤及充填空间优化布局方法研究. 能源与节能. 2024(07): 118-120 .
    5. 贾住平,郑禄璟,金开玥,郑禄林,荣鹏. 超大断面破碎软岩硐室围岩稳定性及控制技术研究. 黄金. 2024(09): 1-7 .
    6. 张翔,朱斯陶,张修峰,王超,陈洋,李士栋,孔震,朱权洁,袁腾飞. 深厚表土运动诱发高应力煤柱频繁冲击机制及防控试验研究. 岩石力学与工程学报. 2024(10): 2552-2569 .
    7. 朱斯陶,张翔,姜福兴,马俊鹏,张修峰,夏开文,王超,李士栋,刘金海,朱权洁,曲效成. 深井高应力大巷煤柱释能改性防冲机理及应用. 煤炭学报. 2024(09): 3711-3727 . 本站查看
    8. 张良,王来贵,REN Ting,李祥春,高科,李海涛,赵善坤. 强扰煤岩体蠕变过程中跨尺度非连续结构演化研究进展. 煤田地质与勘探. 2024(10): 47-59 .
    9. 雷瑞德,粟罗,胡超,李俊,周林森,黄凌,顾清衡. 基于矿物颗粒模型的裂隙煤岩微裂纹扩展演化规律研究. 煤矿安全. 2024(11): 154-165 .
    10. 陈磊,沙仙武,黄智强. 高海拔大断面巷道施工关键技术探讨与思考——以西藏驱龙铜矿为例. 化工矿物与加工. 2023(02): 9-13 .
    11. 余天成,原野. 陡倾地层大型硐室群岩体质量评价分析. 中国矿业. 2023(S1): 121-125+138 .
    12. 孙晓明,朱明群,张勇,徐爱国,崔力,缪澄宇,赵成伟,张尚坤. 深部泵房吸水井硐室群稳定性控制对策及应用. 工程科学学报. 2023(10): 1693-1703 .
    13. 权振龙. 科卡金矿井下维修硐室稳定性分析及支护优化研究. 建筑施工. 2023(06): 1248-1251 .
    14. 陈结,杜俊生,蒲源源,姜德义,齐庆新. 冲击地压“双驱动”智能预警架构与工程应用. 煤炭学报. 2022(02): 791-806 . 本站查看
    15. 王力强,张明晓. 煤矿岩巷大断面硐室二次成巷施工的实践. 内蒙古煤炭经济. 2022(07): 112-114 .
    16. 潘俊锋,闫耀东,马小辉,谢非,马文涛,吕大钊,孙晓东,冯美华. 考虑时变特性的煤层大巷群冲击地压机理及防治. 煤炭学报. 2022(09): 3384-3395 . 本站查看

    Other cited types(13)

Catalog

    Article views (55) PDF downloads (84) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close