YAN Changbin, FAN Minghui, CHEN Kui, et al. Analysis on TBM cutter consumption based on the particle size distribution of rock debris[J]. Journal of China Coal Society, 2020, 45(12): 4216-4227.
Citation: YAN Changbin, FAN Minghui, CHEN Kui, et al. Analysis on TBM cutter consumption based on the particle size distribution of rock debris[J]. Journal of China Coal Society, 2020, 45(12): 4216-4227.

Analysis on TBM cutter consumption based on the particle size distribution of rock debris

More Information
  • Available Online: April 09, 2023
  • The rock debris is produced by rock-machine interaction during TBM excavation.The rock debris and its particle size distribution are crucial and effective indexes to evaluate TBM geological adaptability,tunneling efficiency and cutter consumption.In terms of the problem of cutter consumption evaluation of double shield TBM in water conveyance tunnel of Lanzhou water source construction project,the in-situ measurement and screening tests of TBM rock debris for different rock mass conditions were carried out.The measured data of rock debris particle size distribution were statistically analyzed and fitted with the theoretical distribution function.The characteristics of TBM cutter consumption was summarized.On above basis,the relationships between TBM cutter consumption under different rock mass conditions and some particle size distribution parameters of rock debris,i.e.coarse index (CI),particle gradation coefficient and category ratio were discussed.The results show that the cutter consumption is closely related to rock mass and geological conditions.The higher the rock strength and abrasiveness,the more the cutter consumption.TBM cutter consumption in the surrounding rocks of class II and IV is significantly higher than that in the surrounding rocks of class III.The cutter diameter has a certain influence on the cutter consumption,large diameter cutters can reduce the consumption under the same surrounding rock conditions.For different lithology conditions,the particle size distribution of rock debris is uneven,which is generally well graded.The particle size distribution of rock debris conforms to the Rosin-Rammler function,and the Rosin-Rammler function can be used to calculate the particle size distribution parameters of rock debris.The correlation between cutter consumption and rock debris curvature coefficient is not obvious,while there is a good quadratic function relationship between cutter consumption and rock debris inhomogeneity coefficient,and the correlation coefficient is 0.875.Meanwhile,there is a significant quadratic function relationship between cutter consumption and the coarse index of rock debris,and the correlation coefficient is 0.87.When the coarse index is higher than 430,the higher the coarse index of rock debris is,the higher the TBM tunneling efficiency is,and the smaller the cutter consumption is.The cutter consumption is positively proportional to the average particle size of rock debris including geometric average particle size and R-R function average particle size,and the correlation coefficients are 0.84.The cutter consumption is closely related to the proportion of debris shape and its content.The higher the rock chip content is,the smaller the cutter consumption is.When the content of flaky debris is more than 40%,the decrease rate of cutter consumption decreases faster.When the content of rock blocks and powder increase,the cutter consumption also increase.When the content of block debris is more than 40%,the increase rate of cutter consumption is faster.The research results establish an effective relationship between TBM tool consumption and rock slag particle size distribution.
  • Related Articles

    [1]CHEN Jiyuan, ZHAO Hui, XU Jianliang, ZHONG Mei, XIONG Sai, DAI Zhenghua, LIU Haifeng. Study on the slurry properties of Xinjiang Zhundong coal water slurry controlled by particles size distribution[J]. Journal of China Coal Society, 2025, 50(S1): 534-542. DOI: 10.13225/j.cnki.jccs.2024.0879
    [2]BU Xiangning, TONG Zheng, SUN Yujin, XIE Guangyuan, DONG Xianshu. Research progress on the impact of mineral surface roughness on particle-bubble interaction[J]. Journal of China Coal Society, 2023, 48(11): 4171-4182. DOI: 10.13225/j.cnki.jccs.2023.0698
    [3]SHI Changliang, WANG Fan, MA Jiao, ZHAO Jifen, CHENG Gan, CHEN Lunjian. Dynamics characteristics analysis of coarse coal slime separation with different particle sizes in TBS[J]. Journal of China Coal Society, 2020, 45(S1): 458-462. DOI: 10.13225/j.cnki.jccs.2019.1348
    [4]MA Jiao, WANG Fan, SHI Changliang, CHEN Lunjian, XIE Qiankun. Numerical analysis of motion trajectory of coarse coal particle in interfering fluidized bed[J]. Journal of China Coal Society, 2019, 44(S1): 243-248. DOI: 10.13225/j.cnki.jccs.2018.1707
    [5]WANG Tianwei, PENG Yaoli, XIA Wencheng, XIE Guangyuan. Detachment law of hard-to-float coarse coal particle in flotation cylinder[J]. Journal of China Coal Society, 2018, (12). DOI: 10.13225/j.cnki.jccs.2018.0221
    [6]WANG Dongdong, WANG Huaifa. Experimental study on the wide size coal particles in three phase fluidized bed[J]. Journal of China Coal Society, 2017, (12). DOI: 10.13225/j.cnki.jccs.2017.0752
    [7]XUE Yang, QIU Su-fen, XU Duan-ping, ZHAO Xiao-liang, LI Jia-hui, LIU Jia-xin. Adsorption thermodynamics of mercury on three kinds of particle size colloids from coa[J]. Journal of China Coal Society, 2017, (4). DOI: 10.13225/j.cnki.jccs.2016.0987
    [8]LUO Jia-yuan, HUANG Gun, XIONG Yang-tao, ZHANG Long. Experimental study on the relationship between the distribution of micro coal particles and the crushing energy[J]. Journal of China Coal Society, 2016, (12). DOI: 10.13225/j.cnki.jccs.2016.0334
    [9]FENG Mei-mei, WU Jiang-yu, CHEN Zhan-qing, MAO Xian-biao, YU Bang-yong. Experimental study on the compaction of saturated broken rock of continuous gradation[J]. Journal of China Coal Society, 2016, (9). DOI: 10.13225/j.cnki.jccs.2016.0086
  • Cited by

    Periodical cited type(21)

    1. 张弛, 邓龙传, 庄欠伟, 李晓昭, 王秋平, 乔梁. 基于试验和数值模拟的滚刀旋转破岩受力和效率研究. 岩土力学. 2025(09)
    2. 葛栋梁, 林键, 李湘炜, 奚肖强. 钻井法条件下西部矿区细粒砂岩物理力学与磨蚀特性研究. 广西科技大学学报. 2025(03)
    3. 程桦,谢鲍,姚直书,荣传新,林键. 基于岩渣形貌及岩石磨蚀性的钻井法凿井滚刀磨损评估方法. 煤炭学报. 2025(01): 115-131 . 本站查看
    4. 吕兆川,赵玉军,杜佳明,张禹. 潜孔钻机不同孔深下钻孔岩屑分布研究. 装备制造技术. 2025(03): 29-32 .
    5. 张照煌,王鑫鑫,卓兴建,贾连辉. TBM不均匀磨损盘形滚刀破岩力研究. 力学学报. 2025(05): 1188-1201 .
    6. 郑加星,贾昊霖,裴成元,杜立杰,李青蔚,宋闻学,唐荣. TBM窄刃刀与标准刀现场性能对比测试与分析. 隧道建设(中英文). 2024(02): 360-367 .
    7. 刘春生,程硕,刘延婷,徐鹏,刘若涵,郝鑫. 碟盘刀具截割姿态倾角与破岩模式特征. 煤炭学报. 2024(02): 1183-1198 . 本站查看
    8. 张春瑜. TBM岩渣几何特征与滚刀破岩效率相关性分析. 施工技术(中英文). 2024(07): 85-91 .
    9. 周振梁,雷可,李庆楼,肖海晖,苏珊. 基于图像识别的TBM隧道围岩条件与岩渣级配相关性研究. 隧道建设(中英文). 2024(05): 964-972 .
    10. 张艳,霍涛,张众维,马春明. 基于全局感知和边缘细化的TBM岩渣分割方法. 现代隧道技术. 2024(03): 141-147 .
    11. 宋朝阳,崔泽升,王子雷,王强,荆国业,李英全. 不同钻进参数下反井钻机扩孔钻进速率与岩渣特征试验研究. 建井技术. 2024(03): 68-73+67 .
    12. 刘乃飞,周浩,宋战平,刘廉柏超,陶磊. 盾构隧道围岩特性实时获取技术研究进展. 长沙理工大学学报(自然科学版). 2024(05): 86-103+135 .
    13. 闫长斌,李高留,陈健,李严,杨延栋,杨风威,杨继华. 基于新表面理论的TBM破岩效率评价指标. 岩土力学. 2023(04): 1153-1164 .
    14. 张华. 基于数学建模的煤粉加热炉燃烧状态模拟研究. 工业加热. 2023(05): 30-33+38 .
    15. 兴海,谢兴飞,龚秋明,黄流. 基于TBM滚刀等效更换次数的滚刀寿命分析. 隧道建设(中英文). 2023(S1): 535-543 .
    16. 王媛,宋朝阳. 西部厚基岩地层竖井钻机机械破岩影响因素分析. 建井技术. 2023(04): 74-80 .
    17. 陈雪峰,杨延栋,李治国,周建军,耿超,米迪. 基于复杂地质岩机作用的多维度隧道掘进机适应性评价方法. 科学技术与工程. 2022(20): 8916-8920 .
    18. 闫长斌,汪鹤健,杨继华,陈馈,周建军,郭卫新. 利用PLSR-DNN耦合模型预测TBM净掘进速率. 岩土力学. 2021(02): 519-528 .
    19. 杨延栋,孙振川,张兵,闫长斌. 基于多个隧道掘进机工程数据回归分析的滚刀磨损评价方法. 中国机械工程. 2021(11): 1370-1376 .
    20. 刘远程,邓荣贵,傅支黔,刘润杭,王拓. 双护盾TBM掘进过程中隧道围岩强度及变形测试研究. 铁道科学与工程学报. 2021(10): 2679-2687 .
    21. 徐艳群,刘永奎,刘传军. 文登电站TBM掘进效率的影响因素分析. 建筑机械. 2021(S1): 42-44 .

    Other cited types(8)

Catalog

    YANG Jihua

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (929) PDF downloads (271) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return