LI Xiaoyu, CHEN Wei, YANG Wei, et al. Segmentation method for personnel safety helmet based on super pixel features and SVM classification[J]. Journal of China Coal Society, 2021, 46(6): 2009-2022.
Citation: LI Xiaoyu, CHEN Wei, YANG Wei, et al. Segmentation method for personnel safety helmet based on super pixel features and SVM classification[J]. Journal of China Coal Society, 2021, 46(6): 2009-2022.

Segmentation method for personnel safety helmet based on super pixel features and SVM classification

More Information
  • Available Online: April 09, 2023
  • Published Date: June 29, 2021
  • Safety helmet segmentation is one of the key technologies to realize intelligent video surveillance of personnel in coal mine,which can promote the research of personnel positioning,tracking,and safety helmet wearing detection and other related technologies.For this reason,a method of mine personnel safety helmet segmentation based on super pixel feature extraction and support vector machines (SVM) classification is proposed.Firstly,the simple linear iterative clustering (SLIC) model is used to granulate the personnel image into a certain number of super pixels with similar internal pixel color features and similar spatial locations.Secondly,the color features and gray histogram texture features of super pixels in RGB,YcbCr,Lab and HSV space are extracted,and the profile feature model of safety helmet is established by analyzing the slope variation characteristics of the two-dimensional contour line of the safety helmet.Finally,the color and texture features of the positive sample super pixels of the helmet and the background negative sample super pixels are extracted from the personnel images of training set to train the SVM classifier,and the trained SVM is used to classify the super pixels of the personnel images in the testing set into the positive samples of helmet and negative samples of background.Furthermore,the fake positive samples misclassified by the SVM are identified by the helmet profile feature model and the category correction is performed for them,the under segmented sample super pixels contain both positive sample pixels and negative sample pixels are recognized,they are processed as secondary pixel classification by obtaining the difference set between the boundary mask of the positive sample region and the contour extracted by the Prewitt operator,and the helmet pixels region of the positive sample is separated to obtain the final segmentation result of the helmet.The experiments are carried out on 100 personnel images in the testing data set,and the results show that the average precision of the proposed helmet segmentation algorithm reaches 96.94%,the average recall rate reaches 95.83%,the algorithm has good applicability and robustness for personnel helmet images in different scenarios.
  • Related Articles

    [1]WANG Peizhen, ZHOU Feng, ZHANG Ke, WANG Xuan, ZHANG Dailin. A U-type semantic segmentation network model for coal maceral grouping[J]. Journal of China Coal Society, 2025, 50(S1): 418-427. DOI: 10.13225/j.cnki.jccs.2024.1233
    [2]CHENG Deqiang, ZHANG Rui, XIE Tongxi, LIU Jingjing, ZHENG Lijuan, KOU Qiqi, JIANG He. Segmentation and particle size analysis of coal particles based on ISUNet[J]. Journal of China Coal Society, 2025, 50(2): 1362-1375. DOI: 10.13225/j.cnki.jccs.2024.0544
    [3]LIU Jingjing, SUN Fengqian, ZHANG Haoxiang, JIANG He, CHEN Junhui, KOU Qiqi, CHENG Deqiang. Lightweight coal particle group instance segmentation method based on YOLOv8[J]. Journal of China Coal Society, 2024, 49(S2): 1310-1321. DOI: 10.13225/j.cnki.jccs.2024.0142
    [4]FAN Hongwei, ZHANG Chao, CAO Xiangang, LIU Jinpeng, ZHANG Xuhui, ZHAO Han. An image dust removal and enhancement method in low illumination environment based on dark-bright channel segmentation and fusion[J]. Journal of China Coal Society, 2024, 49(4): 2167-2178. DOI: 10.13225/j.cnki.jccs.2023.0576
    [5]JIANG Song, RAO Binjian, LU Caiwu, GU Qinghua, RUAN Shunling, YANG Hui. Fine segmentation method of blast heap block in open pit mine based on point rendering and multi-branch fusion[J]. Journal of China Coal Society, 2023, 48(S2): 542-552. DOI: 10.13225/j.cnki.jccs.2022.1364
    [6]YANG Xiao, CHEN Wei, REN Peng, YANG Wenjia, BI Fangming. Coal mine monitoring image semantic segmentation based on domain adaptation[J]. Journal of China Coal Society, 2021, 46(10): 3386-3396.
    [7]LI Xiaoyu, YANG Wei, LIU Bin, FANG Weiqiang, ZHANG Xiangyang. Segmentation method for mine personnel images based on superpixel granulation and clustering of homogenous image granules[J]. Journal of China Coal Society, 2021, 46(4): 1341-1354.
    [8]HAN Bin, WU Yi-quan, SONG Yu. Segmentation of early fire image of mine based on improved CV model[J]. Journal of China Coal Society, 2017, (6). DOI: 10.13225/j.cnki.jccs.2016.0964
    [9]WANG Cang-jiao, JIA Duo, LEI Shao-gang, MU Shou-guo. Analysis of dynamic characteristics of vegetation in semi-arid mining area based on time trajectory segmentation algorithm[J]. Journal of China Coal Society, 2017, (2). DOI: 10.13225/j.cnki.jccs.2016.6028
    [10]LI Dan, XIAO Li-qing, SUN Jin-ping, TIAN Xiu-ling, CHENG De-qiang. Research on prevention of blocking bunker by image segmentation based on variational level set[J]. Journal of China Coal Society, 2016, 41(S1): 273-278. DOI: 10.13225/j.cnki.jccs.2015.1175
  • Cited by

    Periodical cited type(12)

    1. 钟彬, 余波, 白水全, 杨亚伟, 张帅, 郝建龙. 基于多维扩张轻量化YOLOv9的矿用安全帽检测方法. 矿业研究与开发. 2025(08)
    2. 李晓宇,范伟强,刘毅,霍跃华. 基于红外视觉特征融合的矿井外因火灾监测方法. 矿业科学学报. 2025(01): 116-124 .
    3. 王鑫,史艳国,李艳文. 基于Raspberry Pi的安全帽识别系统设计与实现. 燕山大学学报. 2024(03): 229-235+243 .
    4. 张婧,冯莹莹,李洪安,杜思哲,莫金明. 煤矿工作面喷雾除尘场景下的安全帽识别算法. 矿业安全与环保. 2024(04): 9-16 .
    5. 程文冬,刘超,权程,叶旺盛,王洋. 改进YOLO v5n的作业人员着装规范性检测方法. 西安工业大学学报. 2024(05): 647-655 .
    6. 王盛兴,王宏波,王灿,李琪琪,孔庆鑫,刘心玥,潘学怡. 基于改进YOLOv5s方法的安全帽佩戴辨识. 智能城市. 2024(10): 46-49 .
    7. 范伟强,王雪瑾,张颖慧,李晓宇. 改进YOLOv7和DeepSORT的井下人员检测与跟踪算法. 煤炭科学技术. 2024(S2): 343-355 .
    8. 范伟强,李晓宇,刘毅,翁智. 基于可见光视觉特征融合的矿井外因火灾监测方法. 矿业科学学报. 2023(04): 529-537 .
    9. 杜青,杨仕教,郭钦鹏,张焕宝,王昱琛,尹裕. 地下矿山作业人员佩戴安全帽智能检测方法. 工矿自动化. 2023(07): 134-140 .
    10. 杨克虎,龙启航,汪嘉文,彭宝山,金波,杨学孟. 基于自注意力机制的矿井次光照图像语义分割研究. 矿业安全与环保. 2023(05): 9-18 .
    11. 李奇泽,杨泽鹏. 基于YOLOv5的施工人员和安全帽检测方法研究. 信息技术与信息化. 2023(11): 121-124 .
    12. 吴青娥,万国梁,周林涛,鲁迎波. 轻量化YOLOv3安全帽检测网络模型构建. 计算机仿真. 2023(12): 293-299 .

    Other cited types(19)

Catalog

    TIAN Zijian

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (587) PDF downloads (212) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return