LI Hui, LUO Jiawei, JI Mengting, et al. Experimental study on high temperature flow characteristics of coal ash[J]. Journal of China Coal Society, 2022, 47(S1): 323-330.
Citation: LI Hui, LUO Jiawei, JI Mengting, et al. Experimental study on high temperature flow characteristics of coal ash[J]. Journal of China Coal Society, 2022, 47(S1): 323-330.

Experimental study on high temperature flow characteristics of coal ash

More Information
  • Available Online: April 09, 2023
  • Published Date: June 27, 2022
  • The flow characteristics of coal ash is one of the important factors affecting liquid slag discharge. To en⁃ sure the smooth process of liquid slag discharge,it is necessary to fully understand the melting and flow characteristics of relevant ash at high temperature. The main purpose of this study is to develop a visual measurement method for the high temperature flow characteristics of coal ash,to understand more about the flow characteristics of experimental coal ash.In the visualization measurement method proposed in this paper,the CCD camera was used to moni⁃ tor the whole flow process of the Jianger coal ash,Tacheng coal ash and Zhundong coal ash in real time,and the flow length and flow velocity of each coal ash sample were obtained by using MATLAB and other image processing software. The cinder sample was adhered to the corundum sheet after heat treatment in advance,and then the experiment was carried out in the form of inverted flow. In the experiment,the contact of substrate was reduced by the flow of ash sample,and the flow resistance was optimized. In addition,various morphological parameters of ash could be obtained by image processing,and the high-temperature flow characteristics could be comprehensively considered by combi⁃ ning multiple parameters. To verify the reliability of the experimental results,the FactSage software was used to calcu⁃ late the viscosity of coal ash at different temperatures,and the calculated results were compared with the experimental results.The results show that the Jianger coal has the worst fluidity among the three kinds of coal ash,while the fluidi⁃ ties of the other two kinds of coal ash are closer.The characteristic viscosity temperature and flow characteristic temper⁃ ature of each sample were obtained. The characteristic viscosity temperature T25 of Jianger coal,Tacheng coal and Zhundong coal samples were 1 324,1 302,1 298 °C respectively,while the critical flow temperature TC of the three coals were 1 299,1 282,1 279 °C respectively.The above characteristic temperature results can provide some ref⁃ erence information for the work in related fields.Mineral analysis shows that the sintering process of coal ash forms blue marble with low melting point,and the melting of blue marble promotes the flow of coal ash to a certain extent, while the formation of high melting point magnesium minerals (magnesia anorthoxite,magnesia spinel,etc.) inhib⁃ its the flow of coal ash.In general,by comparing the flow experiment and viscosity calculation results,the measurement results of the visual measurement method are in good agreement with the viscosity results,which confirms the effective⁃ ness of the method.
  • Related Articles

    [1]LIU Xinran, ZHOU Weiguang, XIE Guangyuan, PENG Yaoli, LIANG Long, LI Yijiang. Application basis and research progress of fractal theory in mineral processing[J]. Journal of China Coal Society, 2023, 48(9): 3573-3588. DOI: 10.13225/j.cnki.jccs.2022.1107
    [2]LU: Junxin, WANG Yonggang, BAO Yahan, LIN Xiongchao, XU Deping. Mineral transformation characteristic of Xinjiang iron-rich low-rank coal during steam gasification[J]. Journal of China Coal Society, 2023, 48(3): 1365-1375.
    [3]SUN Ruijin, SUN Feng, MU Pengfei, WANG Zhangan, ZHAO Lei, LIU Chengchang, DU Yongbo, CHE Defu. Effects of atmosphere and Si/Al additives on component transformation in high-alkali coal ash[J]. Journal of China Coal Society, 2021, 46(S1): 468-476. DOI: 10.13225/j.cnki.jccs.2020.1809
    [4]CHEN Hong-yue, YUAN Shi-hao, NIU Hu-ming, ZHANG De-sheng, ZHONG Dong-hu. Analysis of the driving and passing performance of bolter miner under different geological conditions[J]. Journal of China Coal Society, 2021, 46(7): 2112-2122. DOI: 10.13225/j.cnki.jccs.jj21.0273
    [5]MAO Yandong, HUAI Juntian, LU Tao, LIU Lei, LI Kezhong. Coal characteristics and slagging property of Xinjiang coal for gasification[J]. Journal of China Coal Society, 2020, 45(4). DOI: 10.13225/j.cnki.jccs.2019.0493
    [6]QIAN Jifa, LIU Zhentang, HONG Sen, LIU Guanhua, LIU Haoxiong. Mineral features in coal dust explosion residues[J]. Journal of China Coal Society, 2018, (11). DOI: 10.13225/j.cnki.jccs.2018.0171
    [7]CHENG Hongfei, LI Kaihua, XU Zhanjie, ZHENG Qiming, LIU Qinfu. Absorption of methane by clay minerals in coal gangue[J]. Journal of China Coal Society, 2017, (8). DOI: 10.13225/j.cnki.jccs.2016.1451
    [8]LI Changlun, WANG Yonggang, LIN Xiongchao, YANG Yuanping, TIAN Zhen, WU Xin. Impact of inherent minerals on the yield and properties of char from pyrolysis of the lignite with high ash content[J]. Journal of China Coal Society, 2017, (8). DOI: 10.13225/j.cnki.jccs.2016.1632
    [9]LI Ming, JIANG Bo, QIN Yong, LIU Jie-gang. Analysis of mineral effect on coal pore structure of tectonically deformed coal[J]. Journal of China Coal Society, 2017, (3). DOI: 10.13225/j.cnki.jccs.2016.0273
    [10]ZHANG Ping-an, YUAN Jing, WEN Chang, LUO Guang-qian, YU Dun-xi, YAO Hong. CCSEM investigation on the mineral properties of six Chinese typical steam coals[J]. Journal of China Coal Society, 2016, (9). DOI: 10.13225/j.cnki.jccs.2016.0203
  • Cited by

    Periodical cited type(46)

    1. 田威,郭健,王文奎,张景生,王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究. 材料导报. 2025(03): 85-91 .
    2. 李奇,吴勇,乔磊. 深部中阶煤孔结构的压汞—液氮联合表征及孔隙分形特征. 石油实验地质. 2025(01): 130-142 .
    3. 陈跃,雷琪琪,马东民,王馨,王兴刚,黄蝶芳,荣高翔. 三塘湖盆地条湖—马朗凹陷侏罗系西山窑组巨厚煤层孔隙多尺度联合表征. 石油实验地质. 2025(01): 104-116 .
    4. 侯海海,Elizabeth Cruz Pérez,陈泓圳,胡博,何倩,黄乡琴. 淮北煤田中高阶煤储层物性表征及深部有利区预测研究. 非常规油气. 2025(01): 9-18 .
    5. 刘佳佳,张云龙,杨迪,高志扬,王丹. 基于压汞-液氮吸附-核磁共振法的中低阶煤孔裂隙联合表征. 河南理工大学学报(自然科学版). 2025(02): 19-31 .
    6. 秦雷,王辉,李树刚,刘鹏飞,李嘉伟. 冻结煤未冻水与孔隙特征变化核磁共振研究. 清华大学学报(自然科学版). 2025(03): 601-613 .
    7. 高建良,李星,刘佳佳,朱有彬. 液态CO_2脉动致裂低渗煤细观结构演化特征分析. 安全与环境学报. 2025(03): 955-967 .
    8. 王汉鹏,张冰,张玉军,吴宝杨,武洋,李鹏,王鹏. 地下水库典型岩体全应力应变过程碎胀-储水特性. 哈尔滨工业大学学报. 2025(03): 120-128 .
    9. 高建良,王德坤,关孟瑶,张琛. 酸化对高阶煤不同层理方向增透效果影响研究. 安全与环境学报. 2024(01): 108-117 .
    10. 徐吉钊,徐鹤翔,翟成,丁熊,桑树勋,李全贵,孙勇,余旭,丛钰洲,郑仰峰,唐伟,牛积战,耿进军. 基于颗粒堆积法的煤体表面弛豫率量化初探. 中国矿业大学学报. 2024(01): 116-131 .
    11. 张博,姚少宇,孙宗盛,崔俸源. 高含水低品质煤干燥脱水提质技术进展. 洁净煤技术. 2024(01): 31-44 .
    12. 赵伟波,刘洪林,王怀厂,刘德勋,李晓波. 鄂尔多斯盆地深部本溪组煤孔隙特征及成因探讨——以榆林M172井8~#煤为例. 天然气地球科学. 2024(02): 202-216 .
    13. 钟高润,吴彦君,王帅,李亚婷,雷开宇,李亚军,杨莎莎. 核磁共振技术在二氧化碳地质封存与利用中的应用研究前景综述. 地球物理学进展. 2024(01): 225-240 .
    14. 陈思粮,江泽标,吴少康,权西平,杨希法,莫桥顺. 瓦斯压力对低透性煤吸附-解吸特性及孔隙分布的影响. 煤炭技术. 2024(03): 169-172 .
    15. 张通,谢志争. 裂隙砂岩的水和N_2驱油实验研究. 九江学院学报(自然科学版). 2024(01): 56-58+122 .
    16. 王和堂,王辉,谭江龙,王豪杰,杨景皓,何军. 液态CO_2-水循环作用下煤体的物理改性规律及增润减尘效应. 煤炭学报. 2024(03): 1463-1474 . 本站查看
    17. 潘荣锟,胡代民,贾海林,晁江坤,沈何迪,刘伟. 深部开采高温热液侵蚀煤自燃特性. 煤炭学报. 2024(04): 1906-1916 . 本站查看
    18. 马衍坤,黄勤豪,孔祥国,冯俊军,殷志强,王超. 震动载荷多次作用下烟煤孔裂隙结构演化特征试验研究. 煤炭学报. 2024(04): 1882-1893 . 本站查看
    19. 朱健,胡国忠,许家林,杨南,王同辉,王宏图,秦伟. 煤层层理对微波破煤增透效果的影响. 煤炭学报. 2024(05): 2324-2337 . 本站查看
    20. 胡千庭,郑雪雯,李全贵,张跃兵,宋明洋,邓羿泽,刘继川,赵政舵,余长君,胡良平. 不同粒径煤颗粒孔隙特征及动态润湿行为. 采矿与安全工程学报. 2024(05): 1058-1068 .
    21. 武轶凡,杨文宇,李渊. 基于低场核磁共振的煤岩孔裂隙结构定量表征. 科学技术与工程. 2024(25): 10739-10745 .
    22. 张慧梅,成瑞,陈世官,郝乐乐. 冻融红砂岩孔隙结构演化规律及多重分形特性. 科学技术与工程. 2024(25): 10901-10909 .
    23. 郭隆鑫,李伟,郑义,段思恭,王耀强. 贵州无烟煤孔隙特征的定量分析与表征. 能源与环保. 2024(10): 266-271+279 .
    24. 张春梅,孟静武,罗斌,康凯,顾莹,孙群,张晗. 基于LF-NMR的玉米种子PEG引发效果及水分吸收规律. 农业工程学报. 2024(19): 292-299 .
    25. 郝荷杰,王瑞哲,杨二豪,仇悦,张笑盈,林海飞. 超声波激励时长对煤体孔裂隙结构及渗透特性的影响. 中国安全科学学报. 2024(09): 155-164 .
    26. Rui-Shuai Ma,Ji-Yuan Zhang,Qi-Hong Feng,Xue-Ying Zhang,Yan-Hui Yang. Effect of cyclic hydraulic stimulation on pore structure and methane sorption characteristics of anthracite coal: A case study in the Qinshui Basin, China. Petroleum Science. 2024(05): 3271-3287 .
    27. 贺炳伟,薛海涛,周明明,赵强,杨先阔,郭晨. 黄陵矿区西北部薄煤层孔渗特点与CO_2封存潜力. 西安科技大学学报. 2024(06): 1176-1185 .
    28. 袁安营,杨晓璐,侯俊领,付光胜. 深部近距离煤层群瓦斯涌出异常煤层孔隙结构综合表征. 煤炭科学技术. 2024(12): 116-126 .
    29. 张通,谢志争,袁亮,唐明,郑凯歌,张村,毛钧林. 超前工作面采动煤体损伤与孔裂隙结构演化特征研究. 煤炭学报. 2024(S2): 981-994 . 本站查看
    30. 杨明,韩龙祥,张铁岗,高建良,何敏,张学博. 变压注水环境下煤体孔隙动态演化规律研究. 煤炭学报. 2024(S2): 1033-1040 . 本站查看
    31. 申艳军,马文,王旭,师庆民,张蕾,吕游,许汉华. 不同煤层富油煤的孔隙发育与强度特征关联性研究. 煤矿安全. 2023(03): 161-168 .
    32. 秦雷,吝思恒,李树刚,林海飞. 液氮循环冻结煤体融化过程未冻水含量特征及其对孔隙的影响机制. 煤炭学报. 2023(02): 776-786 . 本站查看
    33. 寇云鹏,郭沫川,谭玉叶,齐兆军,宋泽普,宋卫东. 分级细尾砂胶结充填体早期水化放热及强度演化特性. 工程科学学报. 2023(08): 1293-1303 .
    34. 杨鑫,张通,杜志明,唐明,李燕芳,毛钧林,王鸣超. 砂岩型铀矿碱性地浸过程孔隙结构演化特征. 矿冶工程. 2023(02): 21-25 .
    35. 闫东. 郑庄井田3号煤孔隙结构特征. 山东煤炭科技. 2023(06): 169-172+176 .
    36. 李子全,张东明,张林玉,王小蕾. 高阶原生煤与构造煤的孔隙及分形特征研究. 煤矿安全. 2023(08): 39-44 .
    37. 周西华,周露函,姜延航,白刚,刘天祥,王学鹏. 多因素对液态CO_2冻融致裂煤体的影响试验研究. 中国安全科学学报. 2023(07): 58-67 .
    38. 林海飞,王裴,李树刚,李博涛,罗荣卫,秦雷. 液氮循环冻融作用下煤体渗透率演化规律及模型研究. 采矿与安全工程学报. 2023(05): 1067-1077 .
    39. 肖知国,郝梅. 煤层酸化增透技术的研究现状及进展. 煤矿安全. 2023(10): 1-7 .
    40. 肖乾隆,李锦,李伍. 姚桥矿7号煤层垂向孔隙结构及分形特征研究. 中国煤炭地质. 2023(09): 1-13+26 .
    41. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 .
    42. 王佳贤,刘昌岭,纪云开,孟庆国,卜庆涛,宁伏龙. 低场核磁共振定量测定松散沉积物中含水量的方法. 海洋地质前沿. 2023(12): 98-108 .
    43. 方刚. 榆横北区巴拉素井田富水煤层微观特征研究. 煤矿安全. 2023(12): 191-198 .
    44. 宋平,石志娇,顾莹,张宇,张明楠,宋晓强. DCPTA对干旱胁迫下玉米种子萌发影响的无损检测. 农业工程学报. 2023(21): 279-287 .
    45. 杨明,张涛,张学博,徐靖,韩龙祥,马骥. 基于LNMR的表面活性剂对高阶煤孔隙润湿效果研究. 煤炭科学技术. 2023(S2): 111-120 .
    46. 傅雪海,程鸣. 煤储层中吸附气含量随埋深非线性变化的研究进展. 煤炭科技. 2022(04): 19-26 .

    Other cited types(49)

Catalog

    Article views (60) PDF downloads (61) Cited by(95)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close