WU Yongzheng, FU Yukai, ZHENG Jianwei. Dynamic mechanical properties and strain rate effect of bolts[J]. Journal of China Coal Society, 2020, 45(11): 3709-3716.
Citation: WU Yongzheng, FU Yukai, ZHENG Jianwei. Dynamic mechanical properties and strain rate effect of bolts[J]. Journal of China Coal Society, 2020, 45(11): 3709-3716.

Dynamic mechanical properties and strain rate effect of bolts

More Information
  • Available Online: April 09, 2023
  • In order to reveal the dynamic mechanical characteristics and strain rate effect of bolt support materials under impact load,so as to provide reference for the support design of different magnitude rock burst,and finally achieve the purpose of classified prevention and control of rock burst.The static and dynamic mechanical properties of different impact toughness bolts are tested in laboratory,the impact resistance of different toughness bolts is analyzed through meso,microscale,and the effect of strain rate on the dynamic mechanical response of bolts is also analyzed.The results show that the impact absorbing energy of CRM700 bolt is 1.30 times and 1.14 times of HRB500 bolt and CRM600 bolt respectively,the peak load is 1.18 times and 1.07 times of the two bolts,and the instantaneous deformation is 1.33 times and 0.91 times of the two bolts.The fracture morphology and metallographic structure of CRM700 bolt and HRB500 bolt are significantly different.The fracture source area of HRB500 bolt is dimple shape,the middle expansion area is quasi cleavage+a small amount of dimple,the final fracture area is dimple shape,and the metallographic structure is ferrite+pearlite,while the fracture area of CRM700 bolt is dimple shape,and the metallographic structure is tempered sorbite+bainite+ferrite.At the same time,the strain rate has a significant effect on the yield strength,tensile strength and strain of HRB500 bolt,but has little effect on CRM600 bolt,and has the least effect on CRM700 bolt.Compared with the dynamic mechanical properties of the three kinds of bolts,the load curve and impact energy curve of CRM700 bolt are relatively smooth,and the material shows the characteristics of slow fracture after impact load,which has a good adaptability to impact load.The CRM700 bolt strength has a poor sensitivity to strain rate,while its strain increases significantly with the increase of strain rate,which is well adapted to the impact load at a high strain rate.Under the impact load at a high strain rate,the energy absorption capacity can be improved by increasing the instantaneous deformation.The grain size of HRB500 bolt is grade 6,while that of CRM700 bolt is grade 10.The higher the grain grade,the smaller the grain size and the better the strengthening effect.At the same time,the decrease of grain size results in the increase of crystal interface,which effectively hinders the crack growth,increases the crystal interface area and decreases the inclusion concentration on the grain boundary.Thus it avoids the intergranular fracture and greatly improves the impact resistance of bolt.The smaller the grain size is,the lower the gradient of dislocation accumulation around the second phase,and the weaker the sensitivity of strain rate to the mechanical properties of the bolt.In a word,no matter from the characteristics of impact load curve and impact energy curve,or in the sensitivity of strain rate,CRM700 anchor rod shows a good adaptability to impact load,which can improve energy absorption force by increasing instantaneous deformation under high strain rate impact load.
  • Related Articles

    [1]ZHANG Lianying, WU Peng, LI Ming, ZHENG Yadong, LI Bing. Study on dynamic mechanical properties and microscopic fracture characteristics of coal measures mudstone at real-time temperature[J]. Journal of China Coal Society, 2025, 50(S1): 192-204. DOI: 10.13225/j.cnki.jccs.2024.0483
    [2]LU Zhiguo, GAO Fuqiang, LOU Jinfu, DONG Shuangyong, PENG Xiangyuan, BAI Gang, WANG Xiaoqing, YANG Lei, FU Yukai. Impact resistance performance of rockbolt system with(out) rubber cushion energy absorbing and buffering components[J]. Journal of China Coal Society, 2025, 50(3): 1499-1510. DOI: 10.13225/j.cnki.jccs.2023.1679
    [3]JIANG Li-shuai, WU Xing-yu, WANG Qing-wei, FENG Hao, WU Qiu-hong. Dynamic mechanical behaviors of sand-powder 3D printing rock-like specimens under coupled static and dynamic loads[J]. Journal of China Coal Society, 2022, 47(3): 1196-1207.
    [4]YANG Renshu, LI Weiyu, LI Yongliang, FANG Shizheng, ZHU Ye. Comparative analysis on dynamic tensile mechanical properties of three kinds of rocks[J]. Journal of China Coal Society, 2020, 45(9): 3107-3118. DOI: 10.13225/j.cnki.jccs.2019.0853
    [5]FU Yukai, SUN Zhiyong, JU Wenjun. Experimental study on static and dynamic mechanical properties of bolting wire mesh in rock burst roadway[J]. Journal of China Coal Society, 2019, (7). DOI: 10.13225/j.cnki.jccs.2018.1392
    [6]XIE Beijing, YAN Zheng. Dynamic mechanical constitutive model of combined coal-rock mass based on overlay model[J]. Journal of China Coal Society, 2019, (2). DOI: 10.13225/j.cnki.jccs.2018.1007
    [7]YANG Yang, YANG Renshu, WANG Jianguo, FANG Shizheng, ZHANG Niannian. Experimental study on dynamic mechanical properties of red sandstone under low temperatures[J]. Journal of China Coal Society, 2018, (4): 967-975. DOI: 10.13225/j.cnki.jccs.2017.0816
    [8]YANG Ning, LI Wei-teng, ZHANG Yu-hua, LI Da-yong, LI Ting-chun, WANG Gang, KONG De-sen. Experimental study on compression bending property of casing joint of concrete filled steel tubular supporting arch with square section[J]. Journal of China Coal Society, 2017, (5). DOI: 10.13225/j.cnki.jccs.2016.0955
    [9]WU Shuai-feng, ZHANG Qing-cheng, LI Sheng-lin, CHEN Bin, LIU Dian-shu. Impact mechanical characteristics and damage evolution model of granite[J]. Journal of China Coal Society, 2016, (11). DOI: 10.13225/j.cnki.jccs.2016.0237
  • Cited by

    Periodical cited type(14)

    1. 董双勇, 高富强, 娄金福, 王晓卿, 卢志国. 围压对锚杆锚固性能影响规律试验研究. 采矿与安全工程学报. 2025(04)
    2. 杨尚,宁建国,王俊,高明涛,史新帅,张朝辉. 动载作用下锚固体动态失稳试验研究. 岩石力学与工程学报. 2025(02): 409-426 .
    3. 刘学生,李国庆,李学斌,谭云亮,陈艾,范德源. 一种新型锚杆托盘及其动力学响应模拟研究. 矿业研究与开发. 2024(05): 124-134 .
    4. 尚江淮,缪易辰,潘文,彭启友,李蕊雪,袁勋. 锚杆减振缓冲结构动力学响应模拟研究. 材料导报. 2024(S2): 422-428 .
    5. 吴拥政,付玉凯,周鹏赫,山世昌. 30 000 J多功能落锤冲击试验机研制及应用. 煤炭学报. 2023(02): 623-635 . 本站查看
    6. 程利兴,郭洁,高斌,周翔,李灵博,高健勋,李永元,李靖宇,李义朝,汪占领,周鹏赫. 轴向冲击荷载下锚索动力响应特征试验研究. 采矿与岩层控制工程学报. 2023(04): 35-43 .
    7. 刘超,王文杰,黄永祥,贾稳宏,朱大铭. 爆破动载下全长锚固玻璃钢锚杆累积受力特征研究. 金属矿山. 2023(08): 205-213 .
    8. 王琦,辛忠欣,江贝,王鸣子,何满潮,魏华勇. 恒阻吸能材料及锚固体力学特性研究与应用(英文). Journal of Central South University. 2023(10): 3361-3373 .
    9. 杜学领. 矿用锚杆物理实验研究方法述评. 煤矿安全. 2023(12): 97-115 .
    10. 孙洋. 锚杆自动化生产设备的整体稳定性动态调控方法. 煤矿机械. 2022(03): 155-159 .
    11. 王爱文,范德威,潘一山,赵宝友,代连朋. 扩胀-摩擦式吸能防冲锚索及其力学特性. 煤炭学报. 2022(02): 695-710 . 本站查看
    12. 宁建国,李壮,王俊,邢闯闯,沈圳. 动态拉应力波作用下锚固体力学响应试验研究. 采矿与安全工程学报. 2022(04): 731-740 .
    13. 查文华,王荣荣,王京九,梁译文,杨国威,刘小虎. 抗大变形麻花锚杆力学特性试验及数值模拟研究. 采矿与安全工程学报. 2022(05): 940-950 .
    14. 陈可夯,王朋飞,翟黎伟. 特厚煤层孤岛工作面全煤巷道锚索支护技术研究与应用. 煤矿安全. 2021(12): 106-114 .

    Other cited types(15)

Catalog

    ZHENG Jianwei

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (1194) PDF downloads (926) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return