ZHANG Dongsheng, FAN Gangwei, ZHANG Shizhong, et al. Equivalent water resisting overburden thickness for water conservation mining:Conception,method and application[J]. Journal of China Coal Society, 2022, 47(1): 128-136.
Citation: ZHANG Dongsheng, FAN Gangwei, ZHANG Shizhong, et al. Equivalent water resisting overburden thickness for water conservation mining:Conception,method and application[J]. Journal of China Coal Society, 2022, 47(1): 128-136.

Equivalent water resisting overburden thickness for water conservation mining:Conception,method and application

More Information
  • Available Online: April 09, 2023
  • Water conservation mining of coal resources is one of the core technologies to realize green mining,and the feasibility study of water conservation mining is the basic problem of scientific mine design. From the point of view of the overall overburden water resistance,an equivalent water resisting overburden thickness,indexed by equivalent conductivity,was conceptualized for assessing on the feasibility of water conservation mining,which takes the consideration of the overburden hydraulic characteristics and the groundwater system dynamic response. Based on the Darcy’s law,the Kozeny-Caman equation,and the relation of influence function of overburden subsidence,the equivalent concept was developed by using the layered combination and zonation equivalence. The equivalent vertical hy-draulic conductivity for a single stratum was developed through a parallel calculation of all micro units in horizontal direction. The equivalent vertical hydraulic conductivity for the overall overburden was presented through a series calculation of all strata,which is functioned with mining height,mined out length,subsidence and initial hydro physical parameters. Taking the balance between the runoff rate through the overburden and the recharge rate of the focused aquifer as the critical condition,the relation of the maximum critical hydraulic conductivity of the overburden with mining height and overburden thickness was determined. Thus,a method for calculating equivalent water resisting overburden thickness was developed based on the assumption that the hydraulic conductivity of the overburden is inversely proportional to its equivalent water resistance thickness. The feasibility of water conservation mining could be evaluated on the basis of the allowed maximum critical hydraulic conductivity for maintaining the stability of the aquifer water level. The method was verified in the case of water conservation mining in Ili No.4 Coal Mine based on the field monitoring on the water level. The study results provide a new method for the prediction and evaluation,method selection and parameter optimization of water conservation mining.
  • Related Articles

    [1]YAN Shaohong, LU Yangbo, YIN Xiwen, XU Gang. Further discussion on the quantitative structure of “combined short cantilever-articulated rock beam” in roof with large mining height stope[J]. Journal of China Coal Society, 2025, 50(4): 1894-1906. DOI: 10.13225/j.cnki.jccs.2024.1152
    [2]WANG Hetang, ZHANG Qi, WANG Deming, LI Xingcheng, XU Chaohang. Basic characteristics of mine dust suppression foam and the quantitative evaluation method of its performance[J]. Journal of China Coal Society, 2023, 48(4): 1584-1595. DOI: 10.13225/j.cnki.jccs.2022.1747
    [3]XU Feng, JIN Dewu, YANG Junzhe, HUANG Huan, WANG Shidong, JI Yadong, SHI Lei. Multi scale quantitative evaluation of water resistance capacity of Fengfeng formation in Baode Coal Mine[J]. Journal of China Coal Society, 2021, 46(7): 2379-2386.
    [4]PU Yifan, TANG Dazhen, TAO Shu, TANG Shuling, ZHANG Aobo, ZHANG Taiyuan. Evaluation and optimization of development intervals under conditions of multiple coal seam combinations in Fukang area,Xinjiang Province[J]. Journal of China Coal Society, 2021, 46(7): 2321-2330.
    [5]WU Fan, YANG Zhiqiang, GAO Qian. Quantitative evaluation and classification discrimination of working characteristics of coarse aggregate filling slurry[J]. Journal of China Coal Society, 2020, 45(S1): 70-77. DOI: 10.13225/j.cnki.jccs.2019.1345
    [6]ZHENG Jianwei, JU Wenjun, ZHANG Zhen, WU Jianxing, LU Zhiguo, YI Kang, ZHOU Yiqun. Equivalent section supporting theory and its applications[J]. Journal of China Coal Society, 2020, 45(3). DOI: 10.13225/j.cnki.jccs.2019.0371
    [7]YANG Hongmin, REN Fake, WANG Zhaofeng, CHEN Shanwen, PEI Guanzhen. Quality inspection and quantitative evaluation method for borehole sealing in gas drainage[J]. Journal of China Coal Society, 2019, 44(S1): 164-170. DOI: 10.13225/j.cnki.jccs.2018.1176
    [8]YANG Zhibin, DONG Shuning. Study on quantitative evaluation of grouting effect by water pressure test[J]. Journal of China Coal Society, 2018, (7): 2021-2028. DOI: 10.13225/j.cnki.jccs.2017.0407
    [9]KANG Yongshang, JIANG Shanyu, ZHANG Bing, WANG Jin, YE Jianping, ZHANG Shouren. Qualitative / semi-quantitative evaluation method of coalbed methane exploitation feasibility[J]. Journal of China Coal Society, 2017, (11). DOI: 10.13225/j.cnki.jccs.2017.0334
    [10]ZHAO Chun-hu, HU Wei-yue, JIN De-wu. Method of quantitative evaluation on amount of groundwater loss from uncon- fined aquifer caused by mining disturbance in the arid area of Western China[J]. Journal of China Coal Society, 2017, (1): 169-174. DOI: 10.13225/j.cnki.jccs.2016.5001
  • Cited by

    Periodical cited type(21)

    1. 郭文兵,胡玉杭,胡超群,李龙翔,吴东涛,葛志博. 我国“三下”采煤技术体系与工程实践. 煤炭科学技术. 2025(01): 19-38 .
    2. 顾大钊,曹志国,李井峰,吴宝杨,张勇,蒋斌斌,郭强,王汉鹏,武洋,史小萌,王路军,杨毅,查尔晟. 煤矿地下水库技术原创试验平台体系研制及应用. 煤炭学报. 2024(01): 100-113 . 本站查看
    3. 魏金刚. 小基载比大采高下导水裂隙发育高度分析. 山东煤炭科技. 2024(03): 73-77 .
    4. 秦剑云,姚安华,李亚锋,杨旭,韩创业,杨发军. 三轴加载条件下隔水岩层渗透特性试验研究. 煤炭技术. 2024(05): 165-169 .
    5. 张玉军,李友伟,肖杰,张志巍,李嘉伟. 坚硬覆岩预裂弱化改性效应及导水裂缝带控制机理. 煤炭科学技术. 2024(04): 105-118 .
    6. 雷亚军,范钢伟,杨建辉,任闯难,牛鸿波,范张磊. 煤矿斜井过动水砂层帷幕注浆扩散封堵机理及应用. 中国矿业. 2024(05): 187-195 .
    7. 高保彬,任闯难,李兵兵,程磊,宋少鹏,齐治虎,徐影. 韧性视角下华北型煤田底板承压灰岩水原位保护技术研究. 河南理工大学学报(自然科学版). 2024(04): 12-20 .
    8. 华照来,范钢伟,史进,陈笑予,徐建民,郑勇,任帅锋. 水压-应力作用下井筒围岩的破坏机理与控制研究. 煤炭工程. 2024(06): 126-134 .
    9. 范钢伟,范张磊,张东升,张世忠. 不同加载角压剪耦合作用下岩石强度与渗透性演变特征. 煤炭学报. 2024(07): 3090-3101 . 本站查看
    10. 吕凤圆,常富贵,魏巍,姜占东,韩芳军,杨学琴,李君,杨学贵,马进勇. 非稳定流含水层重构与顶板群孔泄水点判定研究. 矿业安全与环保. 2024(05): 46-51+60 .
    11. 张世忠,范钢伟,张东升,李文平,范张磊. 应力-损伤-渗流耦合下采动弱胶结覆岩渗透性演化规律. 采矿与安全工程学报. 2024(06): 1230-1240 .
    12. 刘晓民,王震宇,刘廷玺,王文娟,杨耀天,王文光. 煤炭资源富集区煤-水协调共采影响因素研究. 煤炭科学技术. 2024(S2): 162-174 .
    13. 徐智敏,陈天赐,陈歌,李剑锋,孙亚军,李鑫,袁慧卿,何也. 煤层采动顶板水文地质参数演化与矿井涌水量动态计算方法. 煤炭学报. 2023(02): 833-845 . 本站查看
    14. 尚宏波,赵春虎,蔚波,薛建坤,刘基. 蒙陕接壤区侏罗系煤田深部煤层开采失水风险评价. 煤矿安全. 2023(04): 194-202 .
    15. 马新锋. 龙泉矿井下工作面底板承压水原位保护开采方案研究. 晋控科学技术. 2023(02): 16-20 .
    16. 高超,秦胜君,安守学,牛淑敏. 基于三维电阻率反演技术的采动覆岩“两带”发育特征研究. 山西煤炭. 2023(01): 109-118 .
    17. 王乐,赵岳然. 基于“等效阻水厚度”保水理论的浅表水资源承载力研究. 山西煤炭. 2023(02): 109-115 .
    18. 刘健. 保水开采技术在底板承压水治理中应用的可行性研究. 山西冶金. 2023(09): 208-210 .
    19. 张建民,李全生,曹志国,温建忠,池明波,杜文凤,马正龙,杨英明,郭俊廷,赵会国. 采动渗流场分析方法. 煤炭学报. 2023(10): 3628-3645 . 本站查看
    20. 刘具,秦坤. 我国煤炭绿色开采技术进展. 矿业安全与环保. 2023(06): 7-15 .
    21. 范钢伟,李其振,张东升. 长壁工作面支架阻力与涌水量时间序列数据联动关系分析. 煤炭学报. 2023(S2): 669-679 . 本站查看

    Other cited types(15)

Catalog

    Article views (1057) PDF downloads (969) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close