冲击地压巷道锚杆支护金属网静载和动载力学性能试验研究

付玉凯, 孙志勇, 鞠文君

付玉凯, 孙志勇, 鞠文君. 冲击地压巷道锚杆支护金属网静载和动载力学性能试验研究[J]. 煤炭学报, 2019, (7). DOI: 10.13225/j.cnki.jccs.2018.1392
引用本文: 付玉凯, 孙志勇, 鞠文君. 冲击地压巷道锚杆支护金属网静载和动载力学性能试验研究[J]. 煤炭学报, 2019, (7). DOI: 10.13225/j.cnki.jccs.2018.1392
FU Yukai, SUN Zhiyong, JU Wenjun. Experimental study on static and dynamic mechanical properties of bolting wire mesh in rock burst roadway[J]. Journal of China Coal Society, 2019, (7). DOI: 10.13225/j.cnki.jccs.2018.1392
Citation: FU Yukai, SUN Zhiyong, JU Wenjun. Experimental study on static and dynamic mechanical properties of bolting wire mesh in rock burst roadway[J]. Journal of China Coal Society, 2019, (7). DOI: 10.13225/j.cnki.jccs.2018.1392

冲击地压巷道锚杆支护金属网静载和动载力学性能试验研究

Experimental study on static and dynamic mechanical properties of bolting wire mesh in rock burst roadway

  • 摘要: 为揭示冲击地压巷道锚杆支护常用金属网的静载和动载力学性能,从而为冲击地压巷道锚杆支护中金属网的选取提供设计依据,采用专门制作的金属网静载和动载力学性能试验装置对常用的经纬网、菱形网和钢筋网的力学性能进行了测试,分析了常用金属网在静载和动载荷下的受力特征和变形状况。实验结果表明:静载作用下,菱形网、经纬网和钢筋网的最大挠度分别为240,236和225 mm,最大承载能力分别为20,16.2和77 kN,3种金属网的最大挠度差别不大,但承载速率差别较大,钢筋网承载速率最大,其次是经纬网,最小是菱形网;动载作用下,菱形网、经纬网和钢筋网的最大吸能能力分别为1 743,938和2 010 J,最大挠度分别为350,420和360 mm,钢筋网吸能能力最大,挠度中等,而菱形网吸能能力次之,而挠度反而最小。菱形网无论是静载还是动载,其初期刚度较低,承受效率慢,而其受力均匀,能承受较大的静载荷和动载荷,且四周绑丝处不易破断,勾接连接方式有很好的承载和缓冲能力,但其主要的缺陷在于承载效率慢,支护刚度太低,通过提高初期张紧力是提高菱形网支护效果的主要途径;经纬网刚度较高,承载效率快,但强度相对较低,易产生经线和纬线错动失效,且经纬网变形时,受力不均匀,绑丝易断裂,四角固定处受力较小,受力传递效果较差,要想提高经纬网支护效果,需提高经纬网经线和纬线之间的约束力;钢筋网初期刚度高,强度大,吸能能力强,但钢筋网的缺点是强度不能充分利用,尤其是钢筋网焊接处和四周绑丝处强度较低,制约了钢筋网支护效果,要想提高其支护效果,需提高焊接点强度和四周绑丝强度。
    Abstract: In order to reveal the static and dynamic mechanical properties of metal mesh commonly used in rock burst roadway,and provide a design basis for the selection of metal mesh in rock burst roadway,the mechanical properties of longitude and latitude mesh,diamond mesh and reinforcing bar mesh are tested by using a special static and dynamic mechanical testing device,the stress characteristics and deformation of the metal mesh under static and dynamic loads are analyzed. The experimental results show that the maximum deflections of diamond mesh,longitude and latitude mesh and reinforcing bar mesh are 240,236 and 225 mm,respectively. The maximum load-carrying capacities of three kinds of metal mesh are 20,16. 2 and 77 kN. On the whole,the maximum deflection of three kinds of metal meshes is basically the same,but the load-bearing rate is different greatly,the load-bearing rate of the reinforcing bar mesh is the largest,followed by the longitude and latitude mesh and the diamond mesh. Under dynamic load,the maximum energy absorption capacities of diamond mesh,longitude and latitude mesh and reinforcing bar mesh are 1 743,938 and 2 010 J,and the maximum deflections are 350,420 and 360 mm,respectively. On the whole,the steel mesh has the largest energy absorption capacity and moderate deflection,followed by the diamond mesh,while the deflection is the smal- lest. Whether under static or dynamic load,the initial stiffness of diamond mesh is low and its bearing efficiency is slow. However,the diamond mesh has uniform force,can bear larger static and dynamic loads,and is not easy to break around the binder. The hook connection has good bearing and buffering capacity. The main drawbacks of the diamond mesh are that the bearing efficiency is slow and the supporting stiffness is too low,the main way to improve the sup- porting effect of diamond mesh is to increase the initial tension force. On the contrary,the stiffness of the longitude and latitude mesh is higher and the load-carrying efficiency is faster,but the strength is relatively lower,which is prone to the failure of the warp and latitude dislocation. When the longitude and latitude mesh is deformed, it is unevenly stressed,and the connection is easy to break,and the force of the wire is poor. In order to improve the supporting effect of longitude and latitude mesh, it is necessary to improve the binding strength between the longitude and latitude mesh. The reinforcing bar mesh has high initial stiffness,high strength and strong energy absorption capacity,but the weakness of the steel mesh is that the strength cannot be fully utilized,especially the low strength of the welded joints of the longitude and latitude mesh and the surrounding bindings,which restricts the support effect of the steel mesh. In order to improve its supporting effect,the strength of welding joint and binding should be increased.
  • 期刊类型引用(15)

    1. 田正,胡智星,张重发,张新鹏,种磊刚,张开玉,孙宁旭. 动载扰动下特厚煤层巷道破坏机理及其控制技术研究. 煤炭技术. 2024(03): 26-31 . 百度学术
    2. 苑新亮,吴拥政,周鹏赫. 锚杆支护网片动载力学性能试验研究. 煤炭工程. 2024(04): 119-124 . 百度学术
    3. 邓鹏海,刘泉声. 基于FDEM数值模拟的软岩大变形预测及新分级研究. 中国公路学报. 2024(11): 164-180 . 百度学术
    4. 钱万学,侯挺,江宗瑜. 象山矿软岩巷道锚网协同承载支护技术应用. 煤. 2023(02): 42-45 . 百度学术
    5. 吴拥政,付玉凯,周鹏赫,山世昌. 30 000 J多功能落锤冲击试验机研制及应用. 煤炭学报. 2023(02): 623-635 . 本站查看
    6. 田鹏. 煤矿金属网力学性能及其匹配性试验研究. 煤. 2023(06): 19-24 . 百度学术
    7. 王宝华,隋纪胜. 赵家寨矿底抽巷锚网喷支护参数设计及应用. 煤炭技术. 2023(11): 98-102 . 百度学术
    8. 杜学领. 矿用锚杆物理实验研究方法述评. 煤矿安全. 2023(12): 97-115 . 百度学术
    9. 原贵阳,高富强,娄金福,李建忠,王晓卿. 锚杆支护金属网力学性能及传力机制试验研究. 煤炭学报. 2022(04): 1512-1522 . 本站查看
    10. 郭良银,安龙. 新城金矿深部全断面锚网喷支护技术研究. 中国矿业. 2022(07): 132-136 . 百度学术
    11. 何杰,吴拥政,付玉凯. 冲击载荷下锚杆护表构件力学响应规律研究. 采矿与安全工程学报. 2021(03): 556-564 . 百度学术
    12. 高明仕,贺永亮,徐东,俞鑫. 冲击地压巷道减隔震技术原理及应用. 煤炭科学技术. 2021(06): 53-60 . 百度学术
    13. 刘海全,朱敬,王建. 特厚煤层回采巷道顶煤稳定特征研究. 煤炭科技. 2021(04): 62-68 . 百度学术
    14. 郭现伟,张云宁,白冰,岳博. 济宁三号煤矿坚硬顶板条件快速掘进支护参数优化. 煤炭科技. 2021(06): 7-14+20 . 百度学术
    15. 付玉凯,鞠文君,吴拥政,陈建强,焦建康,刘昆轮. 深部回采巷道锚杆(索)防冲吸能机理与实践. 煤炭学报. 2020(S2): 609-617 . 本站查看

    其他类型引用(11)

图(7)
计量
  • 文章访问数:  966
  • HTML全文浏览量:  8
  • PDF下载量:  342
  • 被引次数: 26
出版历程
  • 网络出版日期:  2023-04-10
  • 发布日期:  2019-07-30

目录

    /

    返回文章
    返回
    x 关闭 永久关闭