Abstract:
Open-pit coal mining destroys surface vegetation and changes the soil structure,properties and soil microbial composition of grassland ecosystems. In order to study the interaction between AM fungi and soil physical and chemical properties during the restoration succession of open pit mines,this paper investigated the Beidian-Shengli coal and e- lectricity base in the typical grassland area of Xilin Gol,Inner Mongolia,including the correlation between plant diver- sity,aboveground biomass,AM fungal diversity,soil physical and chemical properties of the southern dumps (watering protection),the northern dumps site (near-natural restoration) and the natural grassland community outside the mine,which was formed during the coal mining period and was in different reclamation and vegetation succession status. The results showed that the plant species diversity in the study area showed that the natural grassland community was sig- nificantly higher than the dumping site and the south dumping site of the artificial watering pipe was significantly high- er than the near-naturally restored northern dumping site. A total of AM fungi which belong to 24 species of 9 genera and 6 families of AM fungi were identified in the soil. The dominant species were Glomus reticulatum,Septoglomus de-serticola and Acaulospora sp1. Most AM fungi exhibit low abundance in all areas and have specific sample preferences. There was a significant positive correlation between AM fungal diversity,plant diversity and plant community biomass. AM fungal diversity was significantly positively correlated with soil AP,AN,TN,TC,ALP,and pH. But AK and CAT were significantly negatively correlated. The abundance of most AM fungal species was closely related to soil physical and chemical factors,and only Glomus aggregatum showed a weak correlation with these factors. The results showed that the AMF diversity in the dumping site soil of Beidian-Shengli Open-pit Coal Mine was affected by vegetation di- versity and soil physical and chemical properties,reflecting to some extent the vegetation restoration succession status of the dumping ecosystem. It is conducive to the maintenance of plant diversity and community succession in the exca- vation field,and the abandonment of artificial irrigation measures to restore the artificial vegetation of the dumping site is conducive to the restoration of native plant species. The results of this paper provide a data basis for the study of the diversity of AM fungi community and its influencing factors in open pit mines and their dumps,as well as vegetation reconstruction and ecological restoration.