In-situ remediation of Cd contaminated soil around industrial site by biochar combined with rank vegetation
-
摘要: 黄河流域许多地区由于规划不科学、环保措施不足、监管不严等原因,工业场地往往与农田直接镶嵌,极易造成周边土壤重金属污染。为高效快速低成本修复工业场地周边大范围农田土壤镉污染,选择河南省新乡市凤泉区大块镇工业聚集区周边受污染农田开展大田修复实验,利用2种速生植物3连茬种植(即小白菜-黑麦菜-小白菜)联合2种生物炭(即杨树皮生物炭(PBC)和硫脲改性杨树皮生物炭(TPBC))原位修复土壤镉污染,测定连茬种植下土壤镉的浸出特性及其化学赋存形态,评估2茬小白菜食用健康风险,并揭示生物炭+速生植物联合修复土壤镉污染的潜力。结果表明:①添加2%杨树皮生物炭(PBC)和2%硫脲改性杨树皮生物炭(TPBC)在60 d后土壤镉浸出量低于《地表水环境质量标准》(GB3838—2002)规定的III级标准,添加1% TPBC在90 d后土壤镉浸出量低于III级标准。②连茬第3季修复实验后,与CK比,施用1%和2% TPBC的土壤残渣态镉分别增加了71.73%和75.75%;弱酸溶态镉分别下降了130.86%和160.62%。添加1%和2% PBC的土壤残渣态镉分别增加了45.82%和50.07%。弱酸溶态镉分别下降了56.34%和109.27%。联合修复可使弱酸溶态镉和可还原态镉向可氧化态镉和残渣态镉转化,有效降低镉的生物可利用性。③联合修复可在90 d内将小白菜的食用健康风险降至人体可接受的阈值。由此认为,生物炭+速生植物联合可减少土壤镉浸出量,有效降低镉的生物可利用性,减少镉在小白菜中的转运。“生物炭+速生植物”修复技术克服了原位修复土壤镉污染低效耗时难题,为大范围高效快速低成本原位修复工业场地土壤污染提供了技术支撑。Abstract: Due to unscientific planning, insufficient environmental protection, lax supervision and other reasons, some farmland might be easily polluted with heavy metals in most parts of the Yellow River Basin, where the farmland is always directly embedded with industrial sites.In order to explore an efficiently, and cost-effectively remedy for large-scale Cd-contaminated farmland soil around the industrial site, some in-situ remediation experiments were carried out in the Cd contaminated farmland around the industrial agglomeration area of Dakuai Town, Fengquan District, Xinxiang City, Henan Province.Two fast-growing plants, which were planted continuously(Chinese cabbage-rye vegetable-Chinese cabbage),and 2 kinds of biochar(poplar bark Biochar(PBC),and thiourea-modified poplar bark biochar(TPBC)) were used in the field experiment.The leaching characteristics of soil Cd and the chemical occurrence form under continuous planting were measured.Moreover, the health risks of Chinese cabbage were assessed, the potential capacity of repairing Cd polluted soil, with the remediation mode of biochar plus fast-growing plants, was also revealed.The results showed that:① after 60 days, the leaching concentration of soil Cd when adding 2% PBC and 2% TPBC was lower than the level III standard specified in “Environmental Quality Standard for Surface Water”(GB3838—2002).The soil Cd leaching content with the addition of 1% TPBC after 90 days was lower than the level III standard.② Compared with CK,the 1% and 2% TPBC increased the residual cadmium by 71.73% and 75.75%,and decreased the acid-soluble cadmium by 130.86% and 160.62%,respectively.The 1% and 2% PBC increased the residual cadmium by 45.82% and 50.07%,respectively.The content of acid-soluble cadmium decreased by 56.34% and 109.27%,respectively.The combined remediation could effectively reduce the bioavailability of Cd, through transforming weakly acid-soluble cadmium and reducible cadmium, to oxidizable cadmium and residual cadmium.③ Joint remediation can also reduce the edible health risk of pakchoi to the threshold within 90 days, which was acceptable to the human body.In a word, the combination of biochar and fast-growing plants can reduce the leaching concentration of cadmium in soil, effectively reduce the bioavailability of cadmium, and reduce the transport of cadmium in Chinese cabbage.The remediation technology using “biochar+fast-growing plant” successfully overcomes the difficulties of inefficient and time-consuming in-situ remediation of soil Cd pollution.This technology also provides technical support for the efficient, and low-cost in-situ remediation of large-scale contaminated soil in industrial sites.
-
Keywords:
- industrial site /
- cadmium pollution /
- biochar /
- quick remediation /
- in-situ remediation /
- joint remediation
-
-
[1] 王兴明,王运敏,储昭霞,等.煤矸石对铜尾矿中重金属(Zn,Pb,Cd,Cr和Cu)形态及生物有效性的影响[J].煤炭学报,2017,42(10):2688-2697. WANG Xingming,WANG Yunmin,CHU Zhaoxia,et al.Effects of coal gangue addition on the chemical fraction and bioavailability of heavy metals(Zn,Pb,Cd,Cr and Cu) in copper mine tailings[J].Journal of China Coal Society,2017,42(10):2688-2697.
[2] ZHU Yongqi,WANG Haijiang,LV Xin,et al.Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system[J].Scientific Reports,2020,10(1):20112-20120.
[3] HUANG Danlian,LIU Linshan,ZENG Guangming,et al.The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment[J].Chemosphere,2017,174:545-553.
[4] 马文超,刘媛,孙晓灿,等.镉在土壤-香根草系统中的迁移及转化特征[J].生态学报,2016,36(11):3411-3418. MA Wenchao,LIU Yuan,SUN Xiaocan,et al.Transfer and transformation characteristics of cadmium from soil to Vetiveria zizanioides[J].Acta Ecologica Sinica,2016,36(11):3411-3418.
[5] ZENG Siyan,MA Jing,YANG Yongjun,et al.Spatial assessment of farmland soil pollution and its potential human health risks in China[J].Science of the Total Environment,2019,687(15):642-653.
[6] IRSHAD M K,CHEN Chong,NOMAN A,et al.Goethite-modified biochar restricts the mobility and transfer of cadmium in soil-rice system[J].Chemosphere,2020,242:125152-125164.
[7] 环境保护部.《全国土壤污染状况调查公报》[N],2014.http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.2021-03-31. [8] SHI Jing,LI Lianqing,PAN Genxing.Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil[J].Journal of Environmental Sciences,2009,21(2):168-172.
[9] ZHOU Huimin,WANG Pan,DE Chen,et al.Short-term biochar manipulation of microbial nitrogen transformation in wheat rhizosphere of a metal contaminated inceptisol from North China plain[J].Science of the Total Environment,2018,640(1):1287-1296.
[10] 彭苏萍,毕银丽.黄河流域煤矿区生态环境修复关键技术与战略思考[J].煤炭学报,2020,45(4):1211-1221. PENG Suping,BI Yinli.Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River basin of China[J].Journal of China Coal Society,2020,45(4):1211-1221.
[11] 王波,毛任钊,曹健,等.海河低平原区农田重金属含量的空间变异性——以河北省肥乡县为例[J].生态学报,2006,26(12):4082-4090. WANG Bo,MAO Renzhao,CAO Jian,et al.Spatial variability of the heavy metal contents in cropland of the low Hai River Plain:A case study in Feixiang county of Hebei Province[J].Acta Ecologica Sinica,2006,26(12):4082-4090.
[12] 李芳,李新举.鲁西南煤矿区农田耕层重金属分布特征及污染评价[J].煤炭学报,2018,43(7):1990-1998. LI Fang,LI Xinju.Distribution and pollution assessment of heavy metals in farmland tillage soil at coal mine area of the western-south Shandong Province[J].Journal of China Coal Society,2018,43(7):1990-1998.
[13] 陈兆进,李英军,邵洋,等.新乡市镉污染土壤细菌群落组成及其对镉固定效果[J].环境科学,2020,41(6):2889-2897. CHEN Zhaojin,LI Yingjun,SHAO Yang,et al.Bacterial community composition in cadmium-contaminated soils in Xinxiang city and its ability to reduce cadmiumbio accumulation in pakchoi(Brassica chinensis L.)[J].Environmental Science,2020,41(6):2889-2897.
[14] ABHISEK M,KUMAR D B,MEENAKSHI A,et al.Porous media transport of iron nanoparticles for site remediation application:A review of lab scale column study,transport modelling and field-scale application[J].Journal of Hazardous Materials,2020,403(5):123443-123457.
[15] LIAO Shiguo,LI Dongwei.Review of contaminated sites remediation technology[J].Advanced Materials Research,2012,414:1-4.
[16] GABRIEL P F.Innovative technologies for contaminated site remediation:Focus on bioremediation[J].Journal of the Air & Waste Management Association,1991,41(12):1657-1660.
[17] CHEN Xuan,HE Hongzhi,CHEN Guikui,et al.Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil[J].Scientific Reports,2020,10(4):9528-9540.
[18] 赖冬麟,张奇,陈亭亭,等.张家口市某机械厂原址电镀污染场地土壤修复工程实践[J].环境工程,2020,38(6):75-80. LAI Donglin,ZHANG Qi,CHEN Tingting,et al.Remediation practice of hexavalent chromium and cyanide contaminated soil at the original site of a machineryplant in Zhangjiakou,China[J].Environmental Engineering,2020,38(6):75-80.
[19] HAMID Y,TANG Lin,HUSSAIN B,et al.Efficiency of lime,biochar,Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil[J].Environmental Pollution,2020,257:113609.
[20] TANG Lin,HAMID Y,ZEHRA A,et al.Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and argo-production in cadmium contaminated soil under oilseed rape-rice rotation system[J].Science of the Total Environment,2020,748(15):142481.
[21] LEHMANN J,RILLIG M C,THIES J,et al.Biochar effects on soil biota-A review[J].Soil Biology and Biochemistry,2011,43(9):1812-1836.
[22] YOU Fang,DALAL R,HUANG Longbin.Biochar and biomass organic amendments shaped different dominance of lithoautotrophs and organoheterotrophs in microbial communities colonizing neutral copper(Cu)-molybdenum(Mo)-gold(Au) tailings[J].Geoderma,2018,309:100-110.
[23] JAIN S,SINGH A,KHARE P,et al.Toxicity assessment of Bacopa monnieri L.grown in biochar amended extremely acidic coal mine spoils[J].Ecological Engineering,2017,108:211-219.
[24] XU Yilu,SESHADRI B,SARKAR B,et al.Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil[J].Science of the Total Environment,2018,621(15):148-159.
[25] NI Ni,LI Xiaona,YAO Shi,et al.Biochar applications combined with paddy-upland rotation cropping systems benefit the safe use of PAH-contaminated soils:From risk assessment to microbial ecology[J].Journal of Hazardous Materials,2021,404:124123.
[26] YANG Xu,QIN Junhao,LI Jiachun,et al.Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil[J].Journal of Hazardous Materials,2020,406(15):124325-124338.
[27] LI Na,LIU Rui,CHEN Jianjun,et al.Enhanced phytoremediation of PAHs and cadmium contaminated soils by a Mycobacterium[J].Science of The Total Environment,2021,754(1):141198-141209.
[28] 可欣,周燕,张飞杰,等.污染场地修复药剂安全利用问题及对策[J/OL].环境科学研究:1-13[2021-05-26].https://doi.org/10.13198/j.issn.1001-6929.2020.12.02. KE Xin,ZHOU Yan,ZHANG Feijie,et al.Problems and countermeasures of safe utilization of agents for contaminated sites[J/OL].Research of Environmental Sciences:1-13[2021-05-26].https://doi.org/10.13198/j.issn.1001-6929.2020.12.02.
[29] ZHU Yanfeng,MA Jing,CHEN Fu,et al.Remediation of soil polluted with Cd in a postmining area using Thiourea-Modified Biochar[J].International Journal of Environmental Research and Public Health,2020,17(20):7654-7667.
[30] ZHANG Shaokang,GONG Xiaofeng,SHEN Zhaoying,et al.Study on remediation of Cd-contaminated soil by thermally modified attapulgite combined with ryegrass[J].Soil and Sediment Contamination:An International Journal,2020,29(6):680-701.
[31] LI Lingling,JIA Zhilei,MA Hang,et al.The effect of two different biochars on remediation of Cd-contaminated soil and Cd uptake by Lolium perenne[J].Environmental Geochemistry and Health,2019,41(5):2067-2080.
[32] MI Baobin,LIU Feng,XIE Lingling,et al.Evaluation of the uptake capacities of heavy metals in Chinese cabbage[J].Ecotoxicology and Environmental Safety,2019:171.
[33] NI Wei,DING Guoyong,LI Yifei,et al.Impacts of floods on dysentery in Xinxiang city,China,during 2004—2010:A time-series Poisson analysis[J].Global Health Action,2014,7(1):23904-23913.
[34] 姜玉玲,阮心玲,马建华.新乡市某电池厂附近污灌农田重金属污染特征与分类管理[J].环境科学学报,2020,40(2):645-654. JIANG Yuling,RUAN Xinling,MA Jianhua.Heavy metal pollution and classification management of sewage irrigation farmland around a battery factory in Xinxiang,Henan Province[J].Acta Scientiae Circumstantiae,2020,40(2):645-654.
[35] ZHU Yanfeng,LIANG Huageng,YU Ruilian,et al.Removal of aquatic cadmium ions using thiourea modified poplar biochar[J].Water,2020,12(4):1117-1134.
[36] 国家环境保护总局南京环境科学研究所,中国环境科学研究院.食用农产品产地环境质量评价标准(HJ332—2006)[S]. [37] LUO Mingke,LIN Hai,HE Yinhai,et al.The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil[J].Science of the Total Environment,2020,717(15):137014-137022.
[38] XU Congbin,ZHAO Jiwei,YANG Wenjie,et al.Evaluation of biochar pyrolyzed from kitchen waste,corn straw,and peanut hulls on immobilization of Pb and Cd in contaminated soil[J].Environmental Pollution,2020,261:114133-114141.
[39] S STEVEN C.Implementing probabilistic risk assessment in USEPA superfund program[J].Human and Ecological Risk Assessment:An International Journal,1999,5(4):737-754.
[40] 骆占斌,陈浮,张旺园,等.再生铅厂土壤重金属污染及健康风险评价[J].环境科学与技术,2018,41(4):197-204. LUO Zhanbin,CHEN Fu,ZHANG Wangyuan,et al.Heavy metal contamination and health risk assessment in the soil surrounding a secondary lead plant[J].Environmental Science & Technology,2018,41(4):197-204.
[41] CHEN Dong,ZHONG Wenmeng,YI Pingchen.Effect of humic acid on seedling growth and trace metal accumulation of pak choi(Brassica chinensis L.) cultivated on molybdenum slag-spiked soil[J].Environmental Science and Pollution Research,2020,28(5):6122-6131.
[42] WANG Xiqing,LYU T,DONG Renjie,et al.Dynamic evolution of humic acids during anaerobic digestion:Exploring an effective auxiliary agent for heavy metal remediation[J].Bioresource Technology,2021,320:124331-134341.
[43] 吴广美,王青玲,胡鹏杰,等.镉污染中性土壤伴矿景天修复的硫强化及其微生物效应[J].土壤,2020,52(5):920-926. WU Guangmei,WANG Qingling,HU Pengjie,et al.Sulfur assisted cadmium phytoextraction by sedum plumbizincicola and its effect on microbial community in neutral paddy soil[J].Soils,2020,52(5):920-926.
[44] LIU Nianhui,LIAO Peng,ZHANG Jiachao,et al.Characteristics of denitrification genes and relevant enzyme activities in heavy-metal polluted soils remediated by biochar and compost[J].Science of the Total Environment,2020,739(15):139987-139995.
[45] 陈温福,张伟明,孟军,等.生物炭应用技术研究[J].中国工程科学,2011,13(2):83-89. CHEN Wenfu,ZHANG Weiming,MENG Jun,et al.Researches on biochar application technology[J].Strategic Study of CAE,2011,13(2):83-89.
[46] 李力,陆宇超,刘娅,等.玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J].农业环境科学学报,2012,31(11):2277-2283. LI Li,LU Yuchao,LIU Ya,et al.Adsorption mechanisms of cadmium(II) on Biochars derived from corn straw[J].Journal of Agro-Environment Science,2012,31(11):2277-2283.
[47] MOHAMED I,ALI M,AHMED N,et al.Cow manure-loaded biochar changes Cd fractionation and phytotoxicity potential for wheat in a natural acidic contaminated soil[J].Ecotoxicology and Environmental Safety,2018,165(15):348-353.
[48] LUO Mingke,LIN Hai,HE Yinhai,et al.The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil[J].Science of the Total Environment,2020,717(15):137014-137022.
[49] 汤家庆,张绪,黄国勇,等.水分条件对生物炭钝化水稻土铅镉复合污染的影响[J].环境科学,2021,42(3):1185-1190. TANG Jiaqing,ZHANG Xu,HUANG Guoyong,et al.Effect of water regime on Pb and Cd immobilization by biochar in a contaminated paddy soil[J].Environmental Science,2021,42(3):1185-1190.
[50] ZHU Yanfeng,LIANG Huageng,YU Ruilian,et al.Removal of aquatic cadmium ions using thiourea modified poplar biochar[J].Water,2020,12(4):1117-1134.
[51] DESHANI I A,EILHANN E K,METHIKA V,et al.Soil lead immobilization by biochars in short-term laboratory incubation studies[J].Environment International,2019,127:190-198.
[52] CHEN Dun,WANG Xiaobing,WANG Xiaoli,et al.The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil[J].Science of the Total Environment,2020,714(20):136550-136558.
-
期刊类型引用(12)
1. 罗华. 基于生态安全格局的含能材料污染场地土壤可持续修复研究. 环境科学与管理. 2024(09): 184-188 . 百度学术 2. 代泽宇,周剑林,刘伟银,秦平,陈荣,陈章,李志贤,陈国梁. 负载腐植酸生物炭对矿区土壤淋溶液中Mn~(2+)吸附性能的影响. 煤炭学报. 2024(09): 4006-4018 . 本站查看 3. 莫爱丽,唐惠娟,刘俊,杨飞. 生物炭-植物修复重金属污染土壤的研究进展. 湖南生态科学学报. 2023(01): 104-112 . 百度学术 4. 陈浮,朱燕峰,马静,董文雪,尤云楠,杨永均. 黄土高原矿区生态修复固碳机制与增汇潜力及调控. 煤炭科学技术. 2023(01): 502-513 . 百度学术 5. 许石豪,徐彦昭,张文艺. 生物可降解螯合剂对镉污染土壤修复机理研究. 能源与环保. 2023(03): 118-122+127 . 百度学术 6. 陈浮,朱燕峰,马静,杨永均,尤云楠,王丽萍. 东部平原采煤沉陷区降污固碳协同修复机制与关键技术. 煤炭学报. 2023(07): 2836-2849 . 本站查看 7. 李宛容,钟航玮,张佳慧,路红飞,樊怡菁. 生物炭修复重金属污染领域的研究热点与趋势:基于文献计量学的可视化分析. 山东化工. 2023(23): 107-112+119 . 百度学术 8. 金芮合,刘敏,何尔凯,李晔,黄晔,杨静,刘欣然. 场地土壤污染物归趋、风险评估和修复治理研究进展. 土壤通报. 2022(02): 492-501 . 百度学术 9. 陈金垒,王嘉豪,苏善煜. 化工厂搬迁遗留场地土壤银及氰化物的污染特征与评价. 邵阳学院学报(自然科学版). 2022(03): 86-93 . 百度学术 10. 胡玲君. 土壤铅镉污染修复中植物修复技术的研究进展. 皮革制作与环保科技. 2021(15): 96-97 . 百度学术 11. 李美兰,张富莹,王丽文,张兴隆,罗娜,龚伟,刘白玲. HBP-NH_2的制备及其对尾矿中重金属的淋洗效果. 环境科学与技术. 2021(08): 30-38 . 百度学术 12. 李美兰,张兴隆,张国春. HBP-NH_2/SDS对尾矿中重金属的淋洗效果. 商洛学院学报. 2021(06): 41-47 . 百度学术 其他类型引用(6)