| Citation: | WANG Tao,ZHOU Wei,WANG Zilei,et al. Movement and distribution of particles in the tank of jet and agitation combined flotation machine[J]. Journal of China Coal Society,2024,49(12):4977−4985. DOI: 10.13225/j.cnki.jccs.2024.0007 |
In order to explore the movement and distribution of particles in the tank of jet and agitation co-flotation machine, a geometric model of the tank of jet and agitation co-flotation machine was established. The COMSOL software was used to simulate the flow field distribution and particle movement in the flotation tank under impeller agitation, and a test system of jet and agitation co-flotation device was set up to test the particle dispersion effect. The results showed that some particles pass through the gap between the impeller blades and spiral downward under the action of flow field, the other part of the particles are thrown out by the blade and move helically around and up under the coupling effect of the blade and the flow field. The trajectory curves of all particles were drawn to explore the particle movement and distribution law during the operation of the flotation machine. It was found that the trajectory curves of particles at the bottom of the flotation cell, around the wall and at the corner of the tank have a high coincidence degree, which indicates that the probability of particles moving there is large. The coincidence degree of particle motion trajectories in the upper part of the flotation tank and the area between the wall and the impeller is small, and the probability of particle movement there is low, and only a few particles are distributed there. The uniformity of particle distribution does not increase with the increase of impeller stirring speed, but there is an optimal impeller working parameter. The results of simulation and test showed that the jet and agitation co-flotation machine has better particle dispersion performance under the condition of impeller speed of 6.25 r/s. The particle dispersion is affected by the shape and internal structure of the tank. Adding baffle or using column flotation cell can effectively promote the uniform distribution of particles. The study of the movement and distribution of particles in the tank is beneficial to optimize the structure of the jet and agitation co-flotation machine and improve its flotation efficiency.
| [1] |
杨茂青,程宏志,石焕. 细颗粒矿物浮选设备的发展与展望[J]. 煤炭工程,2022,54(S1):200−209.
YANG Maoqing, CHENG Hongzhi, SHI Huan. Development and prospect of fine particle mineral flotation equipment[J]. Coal Engineering,2022,54(S1):200−209.
|
| [2] |
王伟之,李东林. 浮选柱技术的应用现状及发展趋势[J]. 有色金属(选矿部分),2023(2):19−29.
WANG Weizhi, LI Donglin. Application status and development trend of flotation column technology[J]. Nonferrous Metals (Mineral Processing Section),2023(2):19−29.
|
| [3] |
董恩海. 大型浮选机、磁选机的制造管理[J]. 有色金属(选矿部分),2022(5):159−163.
DONG Enhai. Large-scale flotation machine, magnetic separator manufacturing management[J]. Nonferrous Metals (Mineral Processing Section),2022(5):159−163.
|
| [4] |
DOHM E, FAYED H, VAN WAGONER R. Metallurgical testing and CFD simulation of StackCell® SC-50 high-intensity flotation machine[J]. Minerals Engineering,2022,181:107517. doi: 10.1016/j.mineng.2022.107517
|
| [5] |
SAFARI M, HOSEINIAN F S, DEGLON D, et al. Investigation of the reverse flotation of iron ore in three different flotation cells:Mechanical, oscillating grid and pneumatic[J]. Minerals Engineering,2020,150:106283. doi: 10.1016/j.mineng.2020.106283
|
| [6] |
GALAS J, LITWIN D. Machine learning technique for recognition of flotation froth images in a nonstable flotation process[J]. Minerals,2022,12(8):1052. doi: 10.3390/min12081052
|
| [7] |
沈政昌,李仕亮,史帅星,等. 低碳选矿技术发展现状及发展策略研究[J]. 绿色矿山,2023(1):48−55.
SHEN Zhengchang, LI Shiliang, SHI Shuaixing, et al. Development status and development strategy research of low carbon mineral processing technology[J]. Journal of Green Mine,2023(1):48−55.
|
| [8] |
韩有理,王星,朱金波,等. 射流−搅拌耦合式浮选装置强化煤泥调浆浮选[J]. 中国矿业大学学报,2023,52(2):380−388,416.
HAN Youli, WANG Xing, ZHU Jinbo, et al. Enhancement of coal slurry conditioning flotation using jet-stirring coupling flotation device[J]. Journal of China University of Mining & Technology,2023,52(2):380−388,416.
|
| [9] |
HAN Y L, WANG X, ZHU J B, et al. Gas dispersion characteristics in a novel jet-stirring coupling flotation device[J]. ACS Omega,2022,7(10):9061−9070. doi: 10.1021/acsomega.2c00313
|
| [10] |
HAN Y L, ZHU J B, SHEN L, et al. Bubble size distribution characteristics of a jet-stirring coupling flotation device[J]. Minerals,2019,9(6):369. doi: 10.3390/min9060369
|
| [11] |
ZHOU W, ZHU J B, MIN F F. Study on the hydrodynamic characteristics of jet flotation machine’s jet stirring device[J]. International Journal of Coal Preparation and Utilization,2020,40(11):780−789. doi: 10.1080/19392699.2017.1414050
|
| [12] |
ZHOU W, WANG S J, ZHU J B, et al. Parameter optimization and experimental study of jet mixing device based on CFD[J]. Processes,2022,10(5):933. doi: 10.3390/pr10050933
|
| [13] |
ZHOU W, WANG S J, WANG L L, et al. Study on dispersion and mixing mechanism of coal slime particles in jet mixing flow field[J]. Minerals,2022,13(1):13. doi: 10.3390/min13010013
|
| [14] |
朱金波,韩有理,费之奎,等. 喷射−搅拌耦合式煤泥浮选装置研究[J]. 洁净煤技术,2018,24(1):69−73.
ZHU Jinbo, HAN Youli, FEI Zhikui, et al. Research on jet-stirring coupling coal slime flotation device[J]. Clean Coal Technology,2018,24(1):69−73.
|
| [15] |
朱宏政,王海艳,王海楠,等. 机械搅拌式浮选装置中气泡粒径分布规律[J]. 煤炭学报,2018,43(4):1140−1145.
ZHU Hongzheng, WANG Haiyan, WANG Hainan, et al. Bubble size distribution in a mechanical flotation device[J]. Journal of China Coal Society,2018,43(4):1140−1145.
|
| [16] |
韩有理,朱金波,费之奎,等. 环空射流浮选装置吸气性能研究[J]. 中国矿业大学学报,2019,48(3):633−639.
HAN Youli, ZHU Jinbo, FEI Zhikui, et al. Suction capacity of annular jet flotation device[J]. Journal of China University of Mining & Technology,2019,48(3):633−639.
|
| [17] |
费之奎,朱金波,朱宏政,等. 喷射−搅拌耦合式浮选装置吸气机理研究[J]. 煤炭学报,2017,42(S2):472−478.
FEI Zhikui, ZHU Jinbo, ZHU Hongzheng, et al. Study on inspiratory mechanism of jet-agitation coupled flotation unit[J]. Journal of China Coal Society,2017,42(S2):472−478.
|
| [18] |
孙传尧,史帅星,韩登峰,等. 充气机械搅拌式浮选机内浮选动力学过程分区模型[J]. 中国矿业大学学报,2022,51(3):411−418.
SUN Chuanyao, SHI Shuaixing, HAN Dengfeng, et al. Zoning model of flotation kinetics process in air-forced mechanical agitator flotation machine[J]. Journal of China University of Mining & Technology,2022,51(3):411−418.
|
| [19] |
丁世豪,尹青临,张友飞,等. 浮选颗粒−气泡间脱附过程能量作用机制[J]. 煤炭学报,2022,47(7):2817−2824.
DING Shihao, YIN Qinglin, ZHANG Youfei, et al. Energy mechanism of detachment between particle and bubble[J]. Journal of China Coal Society,2022,47(7):2817−2824.
|
| [20] |
谭明,沈政昌,杨义红. 矿物分选装备技术研究进展[J]. 绿色矿山,2024(1):85−93.
TAN Ming, SHEN Zhengchang, YANG Yihong. Research progress of mineral processing equipment technology[J]. Journal of Green Mine,2024(1):85−93.
|
| [21] |
张明,沈政昌,史帅星,等. 基于数值计算的浮选机内颗粒流动行为研究[J]. 有色金属(选矿部分),2021(4):111−115,137.
ZHANG Ming, SHEN Zhengchang, SHI Shuaixing, et al. Study on flow behavior of particles in flotation machine based on numerical calculation[J]. Nonferrous Metals (Mineral Processing Section),2021(4):111−115,137.
|
| [22] |
张敏,刘炯天,王永田,等. 柱浮选优化充填的动力学分析[J]. 中国矿业大学学报,2008,37(3):343−346.
ZHANG Min, LIU Jiongtian, WANG Yongtian, et al. Dynamic analysis of optimization packing in column flotation separation zone[J]. Journal of China University of Mining & Technology,2008,37(3):343−346.
|
| [1] | DENG Yujie, LIU Yong, WEI Jianping, SHEN Helian, LI Xiang, LI Haichao. Study on the optimal impact stand-off distance of self-excited pulsed supercritical carbon dioxide jet based on resonance effect[J]. Journal of China Coal Society, 2024, 49(7): 3129-3142. DOI: 10.13225/j.cnki.jccs.2023.0508 |
| [2] | LIU Yong, LI Zhiping, WEI Jianping, CAI Yubo, YU Dayang, HUANG Yi. Structure of low-pressure supersonic abrasive air jet nozzle[J]. Journal of China Coal Society, 2024, 49(3): 1704-1716. DOI: 10.13225/j.cnki.jccs.2023.0709 |
| [3] | PAN Yan, MA Fei, CAI Tengfei, MENG Lingxiao, ZHU Qiheng, SUN Zhixiang. Erosion pattern of cavitating jet under wall constraint effect[J]. Journal of China Coal Society, 2023, 48(S2): 618-625. DOI: 10.13225/j.cnki.jccs.SS22.1116 |
| [4] | GU Congcong, LIU Songyong, LI Hongsheng, SUN Dunkai, JIANG Hongxiang, ZHOU Xiaolei. Design and performance of high-pressure energy-gathering water jet generator[J]. Journal of China Coal Society, 2023, 48(12): 4632-4646. DOI: 10.13225/j.cnki.jccs.2023.0503 |
| [5] | TU Yixiang, FAN Chenxing, QIAN Yi’nan, WANG Xiaosun, KANG Yong, LI Deng. Structure optimization of centralbody in dual cavitating jet andthe behavior of coal breaking under its impact[J]. Journal of China Coal Society, 2022, 47(9): 3250-3259. |
| [6] | ZHOU Wei, ZHU Jinbo, MIN Fanfei, FENG An’an, ZHANG Yong. Flow field analysis and structure optimization of jet stirring device for jet flotation machine[J]. Journal of China Coal Society, 2019, (7). DOI: 10.13225/j.cnki.jccs.2018.1294 |
| [7] | LIU Yong, CHEN Changjiang, WEI Jianping, ZHANG Juan. Comparison analysis on the rock breakage pressure induced by abrasive water jets and abrasive gas jets[J]. Journal of China Coal Society, 2018, (9): 2510-2517. DOI: 10.13225/j.cnki.jccs.2017.1770 |
| [8] | ZHU Hongzheng, WANG Haiyan, WANG Hainan, ZHU Jinbo, SONG Shaoxian, MIN Fanfei, ZHOU Zhengyan, WANG Xiangxiang. Bubble size distribution in a mechanical flotation device[J]. Journal of China Coal Society, 2018, (4): 1140-1145. DOI: 10.13225/j.cnki.jccs.2017.1072 |
| [9] | FEI Zhikui, ZHU Jinbo, ZHU Hongzheng, ZHOU Wei, BAI Xuejie, HAN Youli, WANG Hainan. Air-suction mechanism of jet-stirring coupling flotation device[J]. Journal of China Coal Society, 2017, 42(S2): 474-480. DOI: 10.13225/j.cnki.jccs.2017.0441 |
| [10] | ZHOU Wen-dong, WANG De-ming, WANG Qing-guo, LIU Jian-an, WANG He-tang. Water jet suction device in spray foam inside roadheader[J]. Journal of China Coal Society, 2016, 41(S2): 460-467. DOI: 10.13225/j.cnki.jccs.2016.0188 |